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Abstract

We study competition between horizontally differentiated platforms offering ex-
clusive and non-exclusive contracts to one side of the market (content providers).
The introduction of non-exclusive contracts in addition to exclusive contracts soft-
ens the competition for content providers between platforms, as they have more
tools to extract content providers’ surplus. Users on the other side (consumers)
pay the same price that they would pay in the exclusive-only game but gain access
to new content provided by multi-homing content providers, increasing their sur-
plus. Multi-homing content providers’ surplus increases, while it decreases for those
who single-home. Platforms charge more to exclusive and non-exclusive content
providers, increasing their profits. As platform competition increases, platforms’
profits increase if the network benefit on the consumers’ side is high, so that the
price effect dominates the market share effect. Finally, we show that platforms
cannot deter entry by offering exclusive–non-exclusive contracts. In certain cir-
cumstances, platforms will jointly deviate from the exclusive–non-exclusive game
and offer only exclusive prices in order to deter entry.
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1 Introduction

Platforms offer exclusive and non-exclusive content. Netflix, Hulu, and Amazon are the
major platforms in the video streaming business that purchase or license content rights
and sell access to consumers. These platforms advertise their exclusive content to attract
consumers; for example, Netflix advertises exclusive titles such as Stranger Things and
House of Cards. However, consumers also value the myriad of easily accessible movie
titles and sitcom series that are often available on multiple rival platforms (see Table B1
in Appendix B). The video game industry provides another example of platforms that
serve both exclusive and non-exclusive content to consumers (see Table B2 in Appendix
B). Eighth-generation video game consoles (PlayStation 4, Nintendo Switch, Xbox One)
all have exclusive titles,1 such as Legend of Zelda on Nintendo Switch, Kingdom Hearts
on Sony PlayStation4, and Halo on Xbox One. Consumers value not only exclusive titles,
but also non-exclusive titles, such as the Lego and FIFA series.2

How does the availability of both exclusive and non-exclusive contracts impact two-
sided market outcomes? What determines the share of exclusive and non-exclusive con-
tent available on platforms? The answer to these questions has eluded previous studies
due to the tipping feature of two-sided markets.3 This paper seeks to answer these ques-
tions. We consider a model with n symmetric platforms serving a two-sided market
with two types of users: consumers and content providers. Platforms are horizontally
differentiated and offer content providers exclusive or non-exclusive contracts. If a con-
tent provider elects exclusivity, it pays the exclusive price and is contractually prohibited
from joining rival platforms; if the content provider elects non-exclusivity, it joins all
the other platforms by paying each platform’s non-exclusive price. We assume that con-
sumers single-home, or join a single platform exclusively. We study the subgame perfect
Nash equilibrium of the two-stage problem, in which in stage 1, platforms simultaneously
choose prices for both sides of the market, and in stage 2, users join the platforms, tak-

1A title is considered “exclusive” if it is not available on other game consoles. We do not consider its
availability on PC.

2Examples of movie production companies include 20th Century Fox, Sony Pictures, and Warner
Bros.; examples of video game developers include Electronic Arts, Blizzard, and Rockstar Games. These
content providers are not subsidiaries of any platform; they sell or license the rights to their content ex-
clusively to one platform or non-exclusively to multiple platforms. We recognize the need to differentiate
ownership of the content-production process, but we do not consider this particular problem (see, for
example, Hagiu and Lee, 2011).

3The tipping feature is a result of the two-sided market feedback mechanism. If there is a small
increase of side 1 users joining the platform, more side 2 users join the platform, which in turn attracts
even more side 1 users. The feedback effect potentially cascades so that all users join the same platform
despite idiosyncratic preferences. Current theoretical literature on exclusive and non-exclusive contracts
such as Armstrong and Wright (2007) and Hagiu and Lee (2011), recognizes the tipping feature, and
studies the cases where users fully unravel and join the same platform. These studies provide sufficient
conditions for the existence of users choosing the non-exclusive contracts.
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ing prices as given. We show that, under certain conditions, a subgame perfect Nash
equilibrium exists.

We provide two examples of a unique symmetric subgame perfect Nash equilibrium
with three platforms, in which the idiosyncratic preferences are exponentially and uni-
formly distributed (the two-platform game is presented in Appendix C and D). We show
that the two models provide qualitatively similar results. That is, the introduction of non-
exclusive contracts softens platforms’ competition for content providers, as the platforms
have a new margin to extract content providers’ surplus—the exclusive–non-exclusive
contract—in addition to the exclusive-exclusive margin. Consumers pay the same price
as in the exclusive-only game, but gain access to new content provided by multi-homing
content providers, increasing their surplus. Multi-homing content providers’ surplus
increases, but single-homing content providers’ surplus decreases. Intuitively, content
providers that remain single-homers are being charged more while gaining access to the
same mass of consumers, resulting in a loss. Content providers that become multi-homers
pay a price to each platform but receive multiple realizations of positive idiosyncratic
preferences. Platforms’ profits increase by two means: the higher price being charged to
exclusive content providers, and the gains from charging more to non-exclusive content
providers than to exclusive content providers. Finally, we show that welfare increases
when the share of multi-homing content providers is small or close to one.

We show that when there are three platforms in the market in the exclusive–non-
exclusive game, equilibrium prices are found to be higher than in the two-platform model.
As the number of platforms increases, exclusive content providers are worse off due to the
higher price and the smaller market share, whereas non-exclusive content providers are
worse off if the discounted base utility is smaller than consumers’ marginal network ben-
efit. Although prices are higher, market shares are lower since there are more platforms
in the market; platforms’ profits increase if the network benefit on the consumers’ side
is high, so that the price effects dominate the market share effect. Thus, having more
competing platforms in the market does not necessarily enhance consumer welfare in the
exclusive–non-exclusive game.4

Finally, we explore the possibility of introducing or removing non-exclusive contracts
as a way to deter entry. We consider a market with two incumbent platforms that can
jointly commit to offer exclusive-only or exclusive–non-exclusive contracts to deter entry,
and the entrant pays a fixed entry cost to enter the market. We show that platforms

4A similar results is found in the exclusive-only game: the overall welfare (i.e., the sum of consumers’
surplus, content providers’ surplus, and platforms’ profit) decreases when the number of platforms in-
creases from two to three (see, Tan and Zhou, 2020). Similarly, Bryan and Gans (2019) showed that a
monopoly platform is welfare superior to duopoly platforms by using a tipping model, where all users
multi-home à la Armstrong and Wright (2007). Our paper complements Bryan and Gans (2019).
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cannot deter entry by offering exclusive–non-exclusive contracts. However, in certain
circumstances, platforms will jointly deviate from the exclusive–non-exclusive game and
offer exclusive prices only in order to deter entry.

In two-sided markets, increases in the market share on one side of the market attracts
users from the other side, which attracts even more users from the original side. Ellison
and Fudenberg (2003) explore conditions in two-sided market models that can lead to
a knife-edge equilibrium (or tipped corner solutions) or a plateau of quasi-equilibria—
many stable equilibria with unequal market sizes. To circumvent the tipping problem,
Carrillo and Tan (2018) and Choi (2010) opt to exogenously split users into exclusive or
non-exclusive types, which ensures that the weaker platform is not necessarily foreclosed
as a result of tipping. Athey et al. (2016) use an exogenous type model to study the
impact of multi-homing users on content production.

An alternative is to assume that platform differentiation on one side of the market
(e.g., sellers) is so small that all sellers multi-home. Armstrong and Wright (2007) focus
on analyzing the equilibrium of a two-sided market model where either all users on one
side tip to one platform, and the equilibrium where all users on one side multi-home to
both platforms. In contrast, we assume that platform differentiation is not too small, so
that multi-homers and single-homers can coexist in equilibrium, similar to Belleflamme
and Peitz (2019) and Liu et al. (2019). Belleflamme and Peitz (2019) study a two-platform
game where one side of the market (e.g., sellers) is allowed to multi-home. Sellers (content
providers in our model) choose between single-homing or multi-homing to all platforms,
while buyers (consumers in our model) single-home.5 They find conditions under which
multi-homing is welfare-enhancing (i.e., platforms’ profits, buyer surpluses, and seller
surpluses increase). Under certain conditions, we find that this result holds for two
and three platforms. Liu et al. (2019) study a two-sided platform game in which both
buyers and sellers can multi-home, and platforms compete on transaction fees charged
on both sides. They show that the effect of increasing platform competition depends
on whether buyers multi-home or not; platform competition shifts the fee structure in
favor of buyers if buyers are single-homing but shifts the fee structure in favor of sellers
if buyers are multi-homing.6 We complement these studies by offering a mathematically

5Our paper extends Belleflamme and Peitz (2019) in three ways. First, our model allows for non-
correlated idiosyncratic preferences (e.g., exponential and uniform distributions). Second, we consider
more than two platforms. Our model is more tractable when the number of platforms is larger than two.
Third, we distinguish between exclusive and non-exclusive prices for content providers. In Belleflamme
and Peitz (2019), content providers that opt to multi-home pay the sum of each platform’s exclusive price.
Distinguishing between exclusive and non-exclusive prices allows us to study exclusive discounts that
platforms offer to attract exclusive content providers. For a discussion of why platforms are interested
in offering discounts to exclusive content providers, see Section 6.

6The model suggested by Liu et al. (2019) differs from our model in many aspects. First, in their
model, platforms are differentiated from the buyer’s perspective but identical from the seller’s perspective,
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tractable model that allows us to identify equilibria in which platforms offer exclusive
and non-exclusive contracts.

Our random utility maximization model is similar to Tan and Zhou (2020), who study
a game in which platforms offer exclusive contracts only to content providers, whereas
we consider a game in which platforms offer non-exclusive prices in addition to exclusive
prices. We complement Tan and Zhou (2020) by studying the exclusive–non-exclusive
game with n-platforms and general market shares.

Note that our paper provides an intuition as to why platforms do not have incen-
tives to offer exclusive contracts similar to the previous literature on one-sided models
with horizontally differentiated consumers (Bernheim and Whinston, 1998; Calzolari and
Denicolò, 2013; Mathewson andWinter, 1987; O’Brien and Shaffer, 1997).7 Exclusive con-
tracts intensify competition, leading to lower prices and profits. If non-exclusive prices are
also offered, exclusive prices are higher, as platforms have more tools to extract content
surplus. Thus, non-exclusive prices soften competition.

Previous empirical literature has studied the impact of exclusive contracts on platform
choice. Corts and Lederman (2009) and Nair (2007) study the impact of exclusive and
non-exclusive titles on console adoption. Corts and Lederman (2009) report that 40%
of total video game titles are non-exclusively available on multiple consoles and Prieger
and Hu (2008) find that “PlayStation 2 and Xbox garner most of their revenue from
non-exclusive titles.” While certain titles are produced by the platforms themselves,
most of the content available on platforms is produced by third-party movie producers
and video game developers. Lee (2013) estimates the impact of exclusive titles on the
adoption of sixth-generation video game consoles, concluding that exclusivity promotes
the entry of smaller platforms but does not benefit the larger incumbents. These studies
further motivate the need for a theoretical approach to understand how exclusive and
non-exclusive contracts impact content availability.

Our paper also contributes to the literature on competitive price discrimination (e.g.,
Armstrong and Vickers, 2001, 2010; Chica and Tamayo, 2020; Hoernig and Valletti, 2007;

while in our model, platforms are differentiated from both buyer’s and seller’s perspectives. Second, we
distinguish between exclusive and non-exclusive prices for content providers. In the model used by Liu
et al. (2019), sellers pay the same price—regardless of their homing decision—to each platform they join.
Finally, the utility and profit functional forms of both models are different.

7Calzolari and Denicolò (2013) considers a one-sided model in which consumers are horizontally dif-
ferentiated and firms compete by offering exclusive and non-exclusive non-linear contracts. The authors
show that when firms compete in non-linear pricing, the competition is limited by the extent of product
differentiation. However, when exclusive contracts are introduced, firms compete in utility space, which
intensifies competition, resulting in lower prices and profits. Mathewson and Winter (1987) find that
firms do have incentives to offer exclusive contracts, which may have anticompetitive effects. However,
O’Brien and Shaffer (1997) and Bernheim and Whinston (1998) show that these results depend on firms
being restricted to linear pricing (i.e., two-part tariffs [or nonlinear tariffs] restore the neutrality of the
exclusive contracts).
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Rochet and Stole, 2002; Tamayo and Tan, 2020; Yang and Ye, 2008). Most of the previous
literature on competitive price discrimination considers only one-sided models but finds
a similar intuition: When the number of tools available to firms (platforms in our case)
increases, firms can extract consumers’ (or content providers’) surplus more efficiently.

Finally, our results have antitrust implications regarding exclusive contracts and plat-
form ownership.8 First, we show that exclusive contracts in certain cases can be helpful in
deterring entry. Our findings differs from Lee (2013), who shows that exclusive contracts
promote platform entry. Second, we show that having more competing platforms in the
market does not necessarily enhance consumer welfare.

The paper proceeds as follows. Section 2 sets up the model. Section 3 solves the
exclusive–non-exclusive game via backward induction. Section 4 provides two examples in
which a unique symmetric subgame perfect Nash equilibrium exists. Section 5 examines
the impact of platform entry on consumers and content providers’ prices, platforms’
profits and welfare in the exclusive–non-exclusive game. Section 6 discusses different real
life examples of two-sided platforms and how they fit our model prediction. Section 7
concludes.

2 Model

Consider a model with n symmetric platforms serving a two-sided market. There are two
types of users, one type on either side of the market. Side 1 users are consumers, and
side 2 users are content providers. We study the subgame perfect Nash equilibrium of
the two-stage problem: In stage 1, platforms simultaneously choose prices for both sides
of the market; in stage 2, users join the platforms taking prices as given.

We study an exclusive–non-exclusive game where platforms offer content providers a
choice between exclusivity and non-exclusivity. If a content provider elects exclusivity, it
pays the exclusive price and is contractually prohibited from joining rival platforms. If
the content provider elects non-exclusivity, it joins all the other platforms by paying each
platform’s non-exclusive price. Furthermore, we assume that consumers single-home (join
a single platform exclusively) and full market coverage—consumers and content providers
join at least one platform.

We raise two questions on how to model multi-homing users. First, do they receive a
8Note that our results contrast with the anticompetitive effects studied in the exclusive contract

literature in a variety of settings; namely, contracts signed between the buyers and incumbent that
may block the entry of a (more efficient) firm (Aghion and Bolton, 1987; Rasmusen et al., 1991; Segal
and Whinston, 2000), and when buyers compete in downstream markets (Asker and Bar-Isaac, 2014;
Fumagalli and Motta, 2006; Johnson, 2012; Simpson and Wickelgren, 2007; Wright, 2009). We show
that non-neutrality of the exclusive contracts relies on the ability of the platforms to extract content
providers rent and the network effects.
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new draw of an independently and identically distributed preference or the sum of prefer-
ences for individual platforms? We chose the latter for its natural interpretation. Models
using discrete choice specification can simplify the system by assuming the multi-homing
option receives a new draw of preference independent from single-homing preferences. We
favor the add-up specification for its intuitive interpretation of the combination being the
sum of its parts.9 Also, choosing the add-up specification ensures that content providers
do not make homing decisions that are inconsistent with their idiosyncratic preferences
for individual platforms.

Second, when there are n platforms, do users multi-home to all platforms or multi-
home to any subsets of platforms? Similar to Liu et al. (2019), we assumed that
multi-homers join all platforms in the market.10 We assume that multi-homing con-
tent providers join all platforms for two reasons.11 First, it allows us to simplify the
problem of the content provider; instead of modeling all the possible choices where it can
multi-home, we need to consider only two ex-post types of content providers in the general
n-platform case—those that single-home and those that multi-home to all n platforms.
Second, multi-homers joining all platforms is an implied result from models with non-
negative idiosyncratic terms and non-positive equilibrium non-exclusive prices. When
there are n platforms, a content provider that already decided to join two platforms
necessarily joins the third platform, since the content provider receives a payment from
each platform it joins and realizes additional idiosyncratic preferences. Hence, joining all
platforms strictly dominates multi-homing to less than all platforms.12

Our model is solved via backward induction. We first present stage 2 users’ problem
9For example, if a video producer has a certain level of idiosyncratic preference for Netflix and Hulu as

distribution channels, then the utility of multi-homing should intuitively be the sum of given idiosyncratic
values (possibly with additional noise). If the video producer values the combination of Netflix and Hulu
with a new draw of idiosyncratic value, it would allow for the possibility that a video producer who
highly favors either platform individually might value the combination of both platforms below that of
an individual platform.

10There is an inherent asymmetry between the users on both sides regarding their homing decision:
one side can multi-home but the other side always single-homes. Examples include video streaming
platforms (such as Netflix, Amazon Prime Video, and Hulu) and game-publishing platforms (such as
Steam and Google Play Store). These markets are characterized by having many content providers and
contractible exclusive contracts. Our model is not compatible with markets such as dating platforms,
where users are symmetric across sides and exclusive contracts are unenforceable. We analyze platforms’
incentive to offer exclusive discounts to content providers and how it impacts content providers’ decisions
to join platforms exclusively or non-exclusively.

11Liu et al. (2019) study a two-sided platform game in which both buyers and sellers can multi-home
and platforms compete on transaction fees charged to both sides. They show that, depending on the
seller’s per-transaction surplus, the seller: (i) joins no platform, (ii) joins all platforms j 6= i except
platform i, or (iii) joins all platforms.

12Our model does not rely on any assumptions on the sign of prices offered by platforms. Live-streaming
platforms are an example of this type of market—the cost of publishing to additional platforms is low,
content providers are compensated for their broadcasts, and content providers either single-home or
multi-home to all platforms.
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of joining platforms, then stage 1 platforms’ problem of choosing prices. In stage 2,
users take platforms’ prices as given. Each consumer joins the platform that offers the
highest utility; each content provider chooses between joining a platform exclusively or
multi-homing to multiple platforms non-exclusively.

Consumer utility from exclusively joining platform i ∈ N = {1, 2, ..., n} is

ũi1 = v1 + φ1
(
ni2, n

m
2

)
− pi1 + εi1, (1)

where v1 is a base utility common to all platforms, ni2 is the mass of exclusive content
providers available on platform i, and nm2 is the mass of non-exclusive content providers
available on all platforms. The mapping φ1 is a function from R2 to R, and φ1 (ni2, nm2 )
measures the network benefit for consumers derived from content available on platform i.
pi1 is the lump-sum fee that platform i charges to each consumer for accessing its available
content, and εi1 is the idiosyncratic preference for platform i of each consumer, which is
a random variable independently and identically distributed (i.i.d.) across consumers,
with cumulative distribution function (c.d.f.) F1, and an associated probability density
function (p.d.f.) f1. We assume F1 is continuous and differentiable everywhere. Let
ui1 ≡ v1 + φ1 (ni2, nm2 )− pi1 be the deterministic component of the utility.

Consumers who join platform i are those who prefer single-homing to platform i than
other platform. The mass of consumers single-homing to platform i is

ni1 = Pr
(
ũi1 > max

j 6=i
ũj1

)
. (2)

Content provider utility from exclusively joining platform i ∈ N is

ũi2 = v2 + φ2
(
ni1
)
− pi2 + εi2. (3)

The interpretation of each term is analogous to side 1 consumer utility. Since consumers
do not multi-home, content providers derive network benefit only from single-homing
consumers on platform i, ni1. Each content provider has an idiosyncratic preference εi2 for
platform i, which is a random variable i.i.d. across content providers with c.d.f. F2 and
associated p.d.f. f2. Similarly, we assume F2 is continuous and differentiable everywhere.
Let ui2 ≡ v2 + φ2 (ni1)− pi2 be the deterministic component of the utility from exclusively
joining platform i.

Content provider utility from non-exclusively joining all platforms is

ũm2 = v2 (1 + (n− 1)δ) + φm
(
n1

1, . . . , n
n
1

)
−
∑
i∈N

pi2m +
∑
i∈N

εi2. (4)
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When a content provider multi-homes, it receives base utility v2 from the first platform,
but only a discounted base utility, δv2, for each additional platform. We assume that
δ < 1, which reflects the loss in utility stemming from duplicated services provided by
multiple platforms. A non-exclusive multi-homing content provider derives utility from
the mass of consumer available on the platforms it joins, in return it must pay the fee
pi2m to each platform i ∈ N . Let

um2 ≡ v2 (1 + (n− 1)δ)︸ ︷︷ ︸
≡ṽ2

+φm
(
n1

1, . . . , n
n
1

)
−
∑
i∈N

pi2m

be the deterministic component of the utility from non-exclusively joining all platforms.
Each platform offers content providers a non-exclusive price in addition to the exclusive
price. Content providers who join platform i are those who prefer single-homing to
platform i than single-homing to any other platform or multi-homing to all platforms.
The mass of content providers single-homing to platform i is

ni2 = Pr
(
ũi2 > max

j 6=i
{ũj2, ũm2 }

)
. (5)

Content providers who multi-home to join all platforms prefer multi-homing to any
single-homing option. The mass of multi-homing content providers is

nm2 = Pr
(
ũm2 > max

i
{ũi2}

)
. (6)

In stage 1, each platform i sets prices pi1, pi2 and pi2m to solve the problem of

max
{pi1,p

i
2,p

i
2m}

πi
(
pi1, p

i
2, p

i
2m

)
= ni1p

i
1 + ni2p

i
2 + nm2 p

i
2m, (7)

where ni1, ni2, and nm2 are defined by (2), (5), and (6), respectively. Note that multi-
homing content providers pay a total price of ∑i p

i
2m, which is set by platforms jointly

but non-cooperatively. We refer to the difference between exclusive and non-exclusive
prices, pi2m − pi2, as the exclusive premium—the incentive provided by the platform to
convert a non-exclusive content provider into an exclusive content provider.

Our model generalizes the exclusive-price-only model studied by Tan and Zhou (2020),
where both consumers and content providers are restricted to single-homing.13 We use

13In this case, platform i sets exclusive prices pi1 and pi2 to solve the problem of

max
{pi

1,p
i
2}
πi(pi1, pi2) = ni1p

i
1 + ni2p

i
2, (8)

where ni1 is defined by (2) and ni2 is analogously defined as ni1. Tan and Zhou (2020) study the model
for the case of s (≥ 1) sides and n platforms.
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the exclusive-only game as a benchmark model to compare against the exclusive–non-
exclusive game.

3 The Symmetric Equilibrium

The symmetric equilibrium is solved via backward induction. First, stage 2 users choose
which platform to join (or whether to join all platforms in the case of content providers)
taking stage 1 prices as given; then, stage 1 platforms maximize benefits according to how
users would react to different sets of prices. To derive our equilibrium solution, we follow
a strategy similar to that of Tan and Zhou (2020), who study the exclusive-only game.
In stage 2, given a vector of prices P , we show that users uniquely allocate themselves
among the platforms (i.e., the vector of market shares n is determined) so that the
markets clear up. In our setting, content providers multi-home to all platforms. Thus,
if a single-homing content provider deviates from the equilibrium, it has two options:
either to single-home to a different platform or to multi-home to all the platforms. The
fact that content providers can choose between single-homing or multi-homing imposes
new challenges to guarantee that the mapping n 7→ P (n) is well defined. Second, we
simplified our problem, reducing it to the existence and uniqueness of a single variable,
β, that determines how attractive multi-homing is compared to single-homing for content
providers, and show that a subgame perfect Nash equilibrium exists.

3.1 Stage 2

In stage 2, users take stage 1 prices as given and select the choice that maximizes their
utility. Let u = (u1, · · · , un, um) ∈ Rn+1 be a vector of deterministic utilities from each
of the n+ 1 options for users in the market. For i ∈ N , and k ∈ S = {1, 2}, the quantity
Qi
k(u) measures how many users from side k join platform i given the utility levels in u.

Qi
1 : Rn+1 → [0, 1] is defined as

Qi
1 (u) = Qi

1

(
u1, . . . , un, um

)
≡ P

(
ui + εi1 ≥ max

j 6=i, j∈N

(
uj + εj1

))
. (9)

For side 2, Qi
2 : Rn+1 → [0, 1] is defined as

Qi
2 (u) = Qi

2

(
u1, . . . , un, um

)
≡ P

(
ui + εi2 ≥ max

j 6=i, j∈N

(
uj + εj2

)
, ui + εi2 ≥ um + ε2 · 1n

)
,

(10)

where ε2 · 1n = ∑
i∈N ε

i
2. We refer to Qi

k(·) as the exclusive participation function for
platform i on side k. The quantity Qm

2 (u) measures the number of content providers that

10



multi-home to all platforms given the utility levels in u, and it is defined as Qm
2 : Rn+1 →

[0, 1],
Qm

2 (u) = Qi
2

(
u1, . . . , un, um

)
≡ P

(
um + ε2 · 1n ≥ max

j∈N

(
uj + εj2

))
. (11)

We refer to Qm
2 (·) as the non-exclusive participation function on side 2. Note that, given

that consumers always single-home, it follows that Qm
1 (u) = 0 for all u ∈ Rn+1.14

Let P = (pik, pi2m)k∈Si∈N be a vector of prices, and let n = (nik, nm2 )k∈Si∈N be a vector of
market shares. A participation equilibrium (PE) is a set of stable user choices based on
prices and other users’ actions. More precisely, the vector n is a PE associated with P

if and only if it solves the following system of equations:

nik = Qi

k

((
vk + φk

(
njl , n

m
2

)
− pjk

)
j∈N

, ṽ2 + φm (n1)− p2m · 1n
)
,

nm2 = Qm
2

((
vk + φk

(
njl , n

m
2

)
− pjk

)
j∈N

, ṽ2 + φm (n1)− p2m · 1n
)
,

(12)

for all i, j ∈ N , i 6= j, and for all k, l ∈ S, k 6= l. The vector of market shares n = n (P )
is implicitly determined by the system of equations (12).

Let q be the maximal upper bound of the slopes of the participation functions, and
let Φ be the maximal upper bound of the slopes of the network benefit functions. The
constant q represents the sensitivity of the market share function to the utility offered by
each platform, and Φ represents the sensitivity of the marginal network benefit to content
availability. Existence of a PE follows from Brouwer’s fixed-point theorem; uniqueness fol-
lows from Banach’s fixed-point theorem, provided that qΦ is small enough. We summarize
this result in the following proposition.

Proposition 1. For any vector of prices P = (pik, pi2m)k∈Si∈N , there exists at least one
participation equilibrium n (P ) = (nik, nm2 )k∈Si∈N . Moreover, if qΦ < 1/2, then the PE is
unique.15

Proposition 1 shows that given any vector of prices, each consumer joins the platform that
offers the highest utility, while each content provider chooses between joining a platform
exclusively or multi-homing to all platforms, choosing the option that provides it the
highest utility. Proposition 1 shows that uniqueness in the existence of a PE requires users
from each side (as a whole) to be insensitive toward changes in participation decisions

14Let u = (u1, · · · , un, um) and u ∈ Rn+1. Note that as um → −∞, then Qm2 (u) → 0 and Qi2 (u) →
P
(
ui + εi2 ≥ maxj 6=i, j∈N

(
uj + εj2

))
. That is, as um → −∞ our model converges to the exclusive-only

game studied by Tan and Zhou (2020).
15The proof of Proposition 1 is very similar to the proof of Proposition 1 in Tan and Zhou (2020). We

need to extend the proof in Tan and Zhou (2020) to account for equation (11) and the extra dimension
in the utility vector u ∈ Rn+1—the utility of content providers choosing multi-homing. We omit this
proof but is available upon request to the authors.
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of users from the other side. This condition is satisfied either when q is low, which
requires user participation to be insensitive toward changes in utilities offered by each
platform; or when Φ is low, which requires network benefits offered by platforms to be
insensitive toward changes in participation of other-side users. The two conditions are
complementary: if many users change participation decisions toward changes in utility
offered by platforms, then condition qΦ < 1/2 in Proposition 1 can be satisfied by having
network benefit functions be insensitive toward changes in other-side users, and vice
versa.16

3.2 Stage 1

In this section, we solve platforms’ problem (7), taking into account users’ responses.
We assume the existence of a symmetric equilibrium (SE) where all platforms have the
same mass of users and charge the same prices. Let p∗ = (p∗1, p∗2, p∗2m) be the equilibrium
vector price, and let n∗ =

(
n∗1 = 1

n
, n∗2 = 1

n
(1− x) , nm∗2 = x

)
be the vector of equilibrium

market shares. Note that in this SE, consumers split equally among all platforms, while a
portion x of content providers multi-home and the remaining portion 1−x splits equally
among all platforms. We derive the profit function of a platform that deviates from the
proposed SE and show that this deviation is not profitable.

A platform can deviate either by changing its prices or by changing its market shares.
We suppose that platform 1 deviates from the proposed SE by choosing a vector of
market shares n1 = (n1, n2, n

m
2 ). The other n− 1 platforms adhere to the SE by splitting

the remaining market: on side 1, each platform equally splits the remaining market
share and each receives 1−n1

n−1 ; on side 2, the deviating platform chooses n2 and nm2 ,
and the other platforms split the remainder as single-homing content providers equally,
each receiving 1−n2−nm2

n−1 .17 Given the vector of market shares, n1, we need to find a
vector of prices, p1, such that n1 is well defined. That is, we need to find a well-
defined mapping n1 7→ p1(n1) = (p1 (n1) , p2 (n1) , p2m (n1)). If there exists a well-
defined mapping n1 7→ p1(n1), then it follows that n1 is a PE of p1 = p1(n1) if and only
if (n1,p1) solves the following sets of equations:18

16The size of qΦ is capturing the degree in which system (12) is a contracting mapping.
17Note that sum of individual market shares equals that of the full market

n1 + (n− 1) · 1− n1

n− 1 = 1 and n2 + (n− 1) · 1− n2 − nm2
n− 1 + nm2 = 1.

Also, platform i can “choose” nm2 for everyone by unilaterally changing the total payment required to
multi-homing

∑
i p
i
2m.

18Note that from Proposition 1, we know that there is a well-defined mapping p1 7→ n1(p1). Below,
we show sufficient conditions under which there is a well-defined mapping n1 7→ p1(n1). Also note that
in the exclusive-only game, this mapping is explicitly defined (see Tan and Zhou, 2020).
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
n1 = Q1

1 (u1
1, u
∗
1, . . . , u

∗
1, 0)

n2 = Q1
2 (u1

2, u
∗
2, . . . , u

∗
2, u

m
2 )

nm2 = Qm
2 (u1

2, u
∗
2, . . . , u

∗
2, u

m
2 ) ,

(13) and


1−n1
n−1 = Qj

1 (u1
1, u
∗
1, . . . , u

∗
1, 0)

1−n2−nm2
n−1 = Qj

2 (u1
2, u
∗
2, . . . , u

∗
2, u

m
2 )

for each j ∈ {2, · · · , n}.
(14)

Equations (13) and (14) determine the market share of the deviating platform and non-
deviating platforms, respectively. Note that u1

1 is the deterministic utility component of
a consumer who joins platform 1, and u1

2 the deterministic utility component of a content
provider that joins platform 1, and these are defined, respectively, as

u1
1 ≡ v1 + φ1 (n2, n

m
2 )− p1

1 and u1
2 ≡ v2 + φ2 (n1)− p1

2.

u∗1 and u∗2 are the deterministic utility components of consumers and content providers,
respectively, that join one of the n− 1 non-deviating platforms, and are defined as

u∗1 ≡ v1 + φ1

(1− n2 − nm2
n− 1 , nm2

)
− p∗1 and u∗2 ≡ v2 + φ2

(1− n1

n− 1

)
− p∗2.

Finally, the quantity um2 is the deterministic utility component of content providers multi-
homing to all platforms, and is defined as

um2 ≡ v2 + v2 (n− 1) δ + φm

(
n1,

1− n1

n− 1 · 1n−1

)
− p1

2m − (n− 1) p∗2m.

The profits of platform 1 can be rewritten as a function of n1 = (n1
1, n

1
2, n

m
2 ),

π1
(
n1; p∗

)
= n1 · p1(n1) + n2 · p2(n1) + nm2 · p2m(n1).19

The deviating platform chooses the vector of market shares n1 = (n1, n2, n
m
2 ) that max-

imizes its benefits and a vector of prices p1 that is consistent with equations (13) and
(14), taking all other platforms’ prices as given.

Let us show that the mapping n1 7→ p1(n1) is well-defined. Let β ≡ um2 − u2 be
the difference between the deterministic utility components of multi-homing and single-
homing content providers, which is equal to

β = v2 (n− 1) δ + φm

(
n1,

1− n1

n− 1 · 1n−1

)
− φ2 (n1) + p1

2 − p1
2m − (n− 1) p∗2m. (15)

19Prices p1(n1), p2(n1), and p2m(n1) are in fact functions of p∗ as well, p1(n1; p∗), p2(n1; p∗), and
p2m(n1; p∗), respectively. We omitted it for presentation clarity.
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Note that if β ≥ 0 in equilibrium, then content providers would obtain larger deter-
ministic utility by multi-homing than by single-homing. If in addition, the support of
the distribution function of the idiosyncratic preferences of content providers is positive
(e.g., if preferences are distributed following an exponential or uniform distribution over
the interval [0, 1]), then multi-homing strictly dominates single-homing—the equilibrium
corresponds to a corner solution in which no content provider single-homes, n∗2 = 0, and
all of them multi-home, nm∗2 = 1. Thus, if the support of the distribution function of
the idiosyncratic preferences of content providers is positive, in an interior equilibrium,
β < 0.20 We show that there exist functions M2 : R −→ R and M2m : R −→ R such
that the mapping n1 7→ p1(n1) exists.21 Moreover, (13) and (14) uniquely determine the
mapping n1 7→ p1(n1) if and only if (i) there is a unique β∗ ∈ R such that

g (β∗) = 0, (16)

where g is defined as

g (β) ≡ v2 (n− 1) δ + φm

( 1
n
· 1n

)
− φ2

( 1
n

)
+M2 (β)− nM2m (β)− β;

and (ii) β∗ is such that the Jacobian associated with equations (13) at (n∗,p∗) is non-
zero. Using the mapping n1 7→ p1(n1), and from the first-order conditions of π1, it
follows that π1(n1; p∗) has a stationary point n∗ =

(
n∗1 = 1

n
, n∗2 = 1

n
(1− x) , nm∗2 = x

)
,

where x = x(β∗), and the price p∗ is:22

p∗1 = 1−H1 (0)
h1 (0)︸ ︷︷ ︸
≡M1(0)

− 1
n− 1φ

′
2

( 1
n

)
,

p∗2 = M2(β∗)− 1
n− 1

∂φ1

∂ni2

( 1
n

(1− x) , x
)
, and

p∗2m = M2m(β∗)− 1
n (n− 1)

∂φ1

∂ni2

( 1
n

(1− x) , x
)
.

(17)

The terms M1, M2, and M2m represent the market power held by platforms in each
market. The negative terms in (17) associated with either ∂φ1/∂ni2 or φ′2 are the subsidies
received by the users. Note that these terms are determined by the number of platforms
in the market, n, and the size of the derivatives of the network benefit functions at the

20In Section 4, we assume that users’ idiosyncratic preferences follow either an exponential or uniform
distribution with a positive support, and show that there is a unique interior equilibrium in which β∗ < 0.

21These functions are uniquely determined by the distribution of content providers’ idiosyncratic pref-
erences. See the proof of Theorem 1 for a definition of M2 (·) and M2m (·).

22A precise definition of x (·), H1(·), and h1(·) can be found in the proof of Theorem 1.
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equilibrium values. To ensure that any deviation made by platform 1 is non-profitable,
we need to guarantee that n∗ is a global maximizer of π1.

Assumption 1. Every stationary point of π1(n1; p∗) on [0, 1]3 is a global maximum point,
where p∗ is given by (17).

Assumption 1 imposes sufficient conditions on the profit function of the deviating
platform to have a unique global maximizer. In Lemma 1, we provide simpler conditions—
on the distributions of the idiosyncratic preferences—which imply Assumption 1. These
conditions can be checked ex-post once we impose a functional form on the idiosyncratic
preferences.

Theorem 1. Under full market coverage and Assumption 1, suppose there exists a unique
solution β∗ of the equation (16) and that J(β∗) 6= 0, where J is the Jacobian associated
with equations (13). Then, there exists a subgame perfect Nash equilibrium where all
platforms charge prices p∗ = (p∗1, p∗2, p∗2m) given by (17), and the equilibrium market shares
are given by n∗ =

(
1
n
, 1
n

[1− x (β∗)] , x (β∗)
)
.

Theorem 1 shows that equilibrium prices follow an additively separable structure
similar to the exclusive-only case discussed by Tan and Zhou (2020). It shows that both
the exclusive and non-exclusive prices can be decomposed into a market power term (M)
and a network subsidy term (φ′k). Finally, Theorem 1 shows that the solution of the
subgame perfect Nash equilibrium can be reduced to show that there is a unique β that
satisfies g(β) = 0 and that the Jacobian associated with equations (13) at β∗ is non-zero.

Proposition 2. Under full market coverage and Assumption 1, suppose there exists a
unique solution β∗ of the equation (16) and that J(β∗) 6= 0, where J is the Jacobian
associated with equations (13). Suppose the support of the distribution function of the
idiosyncratic preferences of content providers is positive. If (n∗,p∗) is an interior equi-
librium (i.e., n∗1 > 0, n∗2 > 0, and nm∗2 > 0), then β∗ < 0.

From Proposition 2, it follows that if β∗ ≥ 0 and the support of the distribution
function of the idiosyncratic preferences of content providers is positive, then multi-
homing strictly dominates single-homing and the equilibrium corresponds to a corner
solution in which no content provider single-homes, n∗2 = 0, and all of them multi-home,
nm∗2 = 1. On the other side, as β∗ → −∞, then single-homing strictly dominates multi-
homing and the equilibrium corresponds to a corner solution in which no content provider
multi-homes, nm∗2 = 0, and all of them single-home, ∑n

i=1 n
∗
2 = 1.

In an interior equilibrium there exists a set of cutoffs, {ui}n+1
i=1 , such that content

providers for which ∑j 6=i ε
j
2 ≥ ui − un+1 for all i = 1, . . . , n choose to multi-home to all
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platforms. That is, content providers with high idiosyncratic preferences for all platforms
will multi-home. Similarly, content providers for which there exists i ∈ {1, . . . , n} such
that ∑j 6=i ε

j
2 < ui−un+1 and εi2− ε

j
2 ≥ uj−ui for all j 6= i will single-home to platform i.

3.3 Discussion

The introduction of non-exclusive contracts in the content providers’ side leads to a new
margin: the exclusive–non-exclusive margin that platforms base their pricing decisions on.
Replacing an exclusive–exclusive margin with an exclusive–non-exclusive margin softens
platforms’ competition for content providers. Consider a market with two platforms i
and j. If a mass λ of exclusive content providers on platform i change their participation
decision to multi-home on both platforms, then platform j gains an advantage of λ over
platform i. If instead the content providers become exclusive content providers on another
platform, then platform j experiences a net gain of 2λ in content provider advantage over
platform i. Hence, the introduction of non-exclusive contracts leads to a higher market
power component, M2, in the content provider single-homing price (see, e.g., Corollary
2).

The marginal network benefit for consumers from adding exclusive content providers
to platform i is denoted as ∂φ1

∂ni2
. The exclusive and non-exclusive content provider subsidies

depend on how much additional exclusive content providers are worth to consumers, but
not on the value of additional non-exclusive content providers. If platforms were interested
in increasing their total available content—without necessarily increasing their advantage
over other platforms—then we would expect the term ∂φ1

∂nm2
to be part of the subsidy terms.

The presence of the marginal exclusive content providers’ valuation of consumers and the
lack of the marginal non-exclusive content providers’ valuation indicates that the subsidy
is a tool used to attract content providers that can provide an advantage over other
platforms.

Let us recall from Section 2 that the network benefit functions of side k depend only
on the market shares of side l for k, l ∈ {1, 2} and k 6= l (i.e., for side 1 we have φ1 =
φ1 (ni2, nm2 ); for side 2, we have φ2 = φ2 (ni1) and φm = φm (n1

1, . . . , n
n
1 )). In the special case

with exclusive-only content providers (i.e., β → −∞), the equilibrium prices have subsidy
terms that are functions of only the other-side marginal network benefits, ∂φk

∂ni
l
for k, l ∈

{1, 2}, i ∈ N , and k 6= l.23 When we introduce non-exclusive contracts, content providers’
prices now depend on the own-side network benefit functions φ2, φm through β∗ (see,
e.g., equation (15)) in addition to cross-side network benefits φ1.24 Intuitively, consumers
prefer the platform with the highest number of content providers available, and since

23A similar structure is found in prices in Armstrong (2006).
24Tan and Zhou (2020) explained the term ∂φk

∂ni
l

as marginal profit of additional users, which comple-
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multi-homing content providers are shared by all platforms, consumers’ choices between
platforms ultimately depend on the number of exclusive content providers available on
each platform. The share of exclusive versus non-exclusive content providers is determined
by β∗, which is a function of the network benefit functions φ2 and φm. Thus, platforms’
ability to attract consumers depends on the share of exclusive content providers available
on the platform, explaining why content providers’ prices depend on the own-side network
benefit function φ2, φm.

If the network benefit function φ1 is linear, the 1/(n−1) coefficient in the subsidy terms
implies that as the number of platforms increases, both single-homing and multi-homing
content provider subsidies decrease. Tan and Zhou (2020) explain the coefficient as the
marginal advantage gained by increasing 1 unit in users. When there are n platforms, an
increase in 1 unit of users is equivalent to removing 1/(n− 1) user from each competitor,
resulting in 2/(n−1) user net advantage over each competitor. The coefficient represents
the increased difficulty in gaining net advantage as the number of competitors increases.
While this is counterintuitive to one-sided markets, Wright (2004) pointed out that two-
sided markets often deviate from the intuitions we have with one-sided markets.25

Finally, in an interior equilibrium, content providers receive the same total subsidy
regardless of their choice of exclusivity. The exclusive content providers receive the full
subsidy from the single platform they join, 1

n−1
∂φ1
∂ni2

, while non-exclusive content providers
receive 1/n of this term, 1

n−1
∂φ1
∂ni2

, from each of the n platforms they join. This result, com-
bined with the fact that β∗ is independent of φ1, implies that changes in the consumer
network benefit function φ1 have no impact on the share of exclusive versus non-exclusive
content providers. Our model predicts that as consumers increase their marginal valua-
tion for additional content (due to changes in tastes or improvement in content recom-
mendation systems [e.g., Netflix learns your preferences and recommend videos you are
more likely to watch]), it will impact the payment that content providers receive, but the
difference in the total payments that exclusive and non-exclusive content providers re-
ceive will stay the same, leaving the decision to single-home or multi-home unchanged.26

To summarize, the content provider’s homing decision is neutral to changes in consumer
network benefit function.
ments our interpretation of marginal network benefit for ∂φ1

∂ni
2
. Each time a platform steals a unit of users

from competing platforms, the loss is shared equally among all other platforms. When the number of
competitors goes up, it lowers the payoff from undercutting prices, resulting in higher prices for users.

25Wen and Zhu (2019) showed empirically that platform entry resulted in higher prices charged to
content providers.

26Here we are referring to the difference p∗2 − np∗2m and not the exclusive premium.
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4 Examples: Exponential and Uniform Distributions

In this section, we study two examples where equation (16) has a unique solution and
satisfy the condition that guarantees the existence of a subgame perfect Nash equilib-
rium in Theorem 1, and we compare the equilibrium prices and market shares with the
exclusive-only game. We will focus on the case of three platforms, n = 3, and linear net-
work benefit functions—φ1(ni2, nm2 ) = a1(ni2 + nm2 ), φ2(ni1) = a2n

i
1, and φm (n1

1, n
2
1, n

3
1) =

a2 (n1
1 + n2

1 + n3
1), where a1, a2 are positive constants.27

4.1 Exponential distribution

In this subsection, we assume that for each i ∈ {1, 2, 3} and k ∈ {1, 2}, εik follows
an exponential distribution with parameter rk > 0; that is, εik ∼ Exp(rk). Note that
E[εik] = 1

rk
is the expected value of the random utility component of side k users joining

platform i.28 For each side of the market, k ∈ {1, 2}, the idiosyncratic preferences
{ε1

k, ε
2
k, ε

3
k} are i.i.d. We show that equation (16) has a unique solution and provide the

equilibrium prices and market shares of the game.
We introduce the following assumption to ensure that the second-order conditions are

satisfied:

Assumption 2. (i) 1
r2
> 1

3a2 + δv2;
(ii) 4

3r1r2
> (a1 + a2)2.

Let v0 ≡ 2
3a2 + 2δv2. From (15), v0 is the difference between the deterministic utility

components of multi-homing and single-homing content providers when the prices charged
are equal to zero (i.e., um2 − u2 at pi2 = pi2m = 0 for i ∈ {1, 2, 3}). Similarly, 2

r2
is

the expected value of the difference between the random utility components of multi-
homing and single-homing content providers. Assumption 2(i) says that the expected
value of the difference between the random utility components of multi-homing and single-
homing content providers is greater than the difference between the deterministic utility
components of multi-homing and single-homing content providers when the prices charged
are equal to zero. Assumption 2(ii) says that the product of the expected values of the
random utility component of consumers and content providers ( 1

3r1r2
) is larger than the

square of the sum of the subsidy terms for consumers and content providers (i.e., a1
2

and a2
2 ). This assumption guarantees that when content providers are charged non-zero

27In Appendixes C and D, we provide the details of the model with two platforms when the idiosyncratic
preferences follow an exponential and uniform distribution, respectively.

28If rk is small, then the expected user idiosyncratic preferences for platforms are stronger and the
random utility component becomes more relevant than the deterministic utility component. Thus, if r2
is small, content providers will be less likely to multi-home, as we show in Corollary 1.
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prices, the network content providers effect does not always dominate the idiosyncratic
preferences, guaranteeing that the second-order conditions are satisfied.29 We suppose
this assumption is satisfied for the rest of this subsection.

Proposition 3. There exists a unique β∗ < 0 such that equation (16) holds, implicitly
defined by

g (β) = v0 −
1

2r2

4− 3e
r2β

2

1− e
r2β

2
− β = 0.

Moreover, a unique symmetric subgame perfect Nash equilibrium exists in which, in
stage 1, all platforms charge prices

p∗1 = 1
r1︸︷︷︸

M1(0)

−a2

2 ,

p∗2 = 1
r2 (1− y4)︸ ︷︷ ︸

M2(β∗)

−a1

2 , and

p∗2m = −3y4 + y3 + y2 + y + 6
6r2 (1− y4)︸ ︷︷ ︸

M2m(β∗)

−a1

6 ,

(18)

where y ≡ e
β∗r2

2 ∈ (0, 1). In stage 2, the market shares are n∗1 = 1
3 , n

∗
2 = 1

3 (1− y3 (4− 3y)),
and nm∗2 = y3 (4− 3y).

Note that, from Proposition 3, the market power term M2m is larger than M2 for any
value of y ∈ (0, 1), which implies that platforms exert higher market power on multi-
homing content providers. The subsidy term in p∗2, a1/2, is three times that of p∗2m, a1/6,
so content providers receive the same subsidy regardless of their decision to single-home
or multi-home, as noted in the previous section.

From Proposition 3, it follows that β∗ = um∗2 − u∗2 < 0; then, single-homing content
providers get a strictly higher deterministic utility than those multi-homing.30 Moreover,
from Proposition 3 and equation (15),

29Note that if the idiosyncratic preferences follow an exponential distribution, from Proposition 2, it
follows that β∗ < 0 is a necessary condition for (n∗,p∗) to be an interior equilibrium. Assumption 2
guarantees that in fact β∗ < 0, and that (n∗,p∗) is an interior equilibrium.

30Suppose that β ≥ 0 in equilibrium; then, content providers obtain larger deterministic utility by
multi-homing than by single-homing. Given that the idiosyncratic preferences of content providers are
positive, then multi-homing strictly dominates single-homing. It follows that no one single-homes, n∗2 = 0,
and everyone multi-homes, nm∗2 = 1. This is similar to the strong differentiation on the one-side model
in Armstrong and Wright (2007). However, we show in the proof of Proposition 3 that there is no
equilibrium for which β ≥ 0, since this requires setting some prices equal to infinite.
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3p∗2m − p∗2 > v0. (19)

Inequality (19) is a necessary condition for an interior equilibrium. It shows that
the difference between three times the multi-homing prices and single-homing prices,
3p∗2m − p∗2, has to be greater than (um2 − u2) |p2m=p2=0 = v0—the difference between the
deterministic utility components of multi-homing and single-homing content providers
when the prices charged are equal to zero—so that content providers do not always
choose to multi-home.

Note that in equilibrium, β∗ < 0, which is different from the incentive compatibility
constraint. Remember that β∗ is equal to the difference between the deterministic utility
components for multi-homing and single-homing content providers, whereas the incentive
compatibility constraint compares content providers’ prices for multi-homing and single-
homing. That is, p∗2 − 3p∗2m < 0 does not imply p∗2 − p∗2m < 0.

The following corollary shows how the equilibrium market shares change with the
content provider differentiation parameter r2.31

Corollary 1. In an exclusive–non-exclusive equilibrium:

(i) ∂β∗

∂r2
> 0;

(ii) ∂nm∗
2

∂r2
> 0;

Part (i) shows that β∗ is decreasing in 1
r2
; that is, content providers’ utility to multi-

home decreases as platform differentiation to content provider increases. In other words,
as the expected value of the random utility component of content providers increases
(higher 1

r2
), content providers have stronger preferences for platforms, which makes single-

homing more attractive. Part (ii) follows as a consequence of (i): As 1
r2

increases, content
providers are less likely to multi-home.

Comparison to the Exclusive-Only Game. Using the exclusive-only model as a
benchmark, we compare the changes in prices and social surpluses upon the introduction
of non-exclusive prices. The following corollary shows that in the exponential setting for
three platforms, the prices and market shares of the exclusive-only model can be obtained
as a limit case of the exclusive–non-exclusive model.

Corollary 2. As β∗ → −∞, p∗1 → p∗1,E ≡ 1
r1
− a2

2 , p
∗
2 → p∗2,E ≡ 1

r2
− a1

2 , n
∗
2 → n∗2,E ≡ 1

3

and nm∗2 → 0. Moreover, p∗2 monotonically decreases to p2,E as β∗ → −∞.
31Note that content provider prices and market shares are independent of r1. Moreover, as r1 increases,

equilibrium consumer price, p∗1, decreases. Similarly, as r2 increases, equilibrium content provider prices
(exclusive and non-exclusive) decrease.

20



Corollary 2 shows that prices and market shares for the exclusive–non-exclusive game
converge to the prices and markets shares of the exclusive-only game (see, for example,
Tan and Zhou, 2020).32 The introduction of non-exclusive contracts softens the compe-
tition for content providers; that is, the market power component of exclusive content
provider price increases from 1/r2 to 1/r2(1 − y4).33 The subsidy term of the content
provider price does not change as a result of changing exclusive content availability be-
cause of the linearity of the network benefit function.34 Overall, the content provider
single-homing price is higher after introduction of non-exclusive contracts.

Notice that consumer price is the same in both games. Consumer price depends on
the market power termM1 = 1/r1 that platforms exert on consumers minus the subsidies
consumers receive for attracting content providers a2/2. The market power M1 is driven
by the single-sided market competition for consumers between platforms. Note that
the competition for consumers does not change when exclusive–non-exclusive contracts
are introduced; that is, the market power term remains as 1/r1. The subsidy consumers
receive, a2/2, depends on how much the marginal consumer is worth to the single-homing
content provider, ∂φ2

∂n1
, which stays the same in both games.

Why doesn’t the non-exclusive content provider network benefit affect the consumer
subsidy term? To increase the content provider advantage over their rivals, platforms
offer subsidies to both exclusive and non-exclusive content providers. The difference in
consumer network benefit offered by platforms i, j is given by a1(ni2 +nm2 )− a1(nj2 +nm2 ).
Increasing nm2 does not impact the difference. Only by increasing single-homing content
providers, ni2, can platforms increase their advantage. Thus, only the single-homing
content providers’ network benefit matters.

We now compare changes in social surpluses upon the introduction of non-exclusive
contracts in the following corollary.

Corollary 3. The introduction of non-exclusive contracts:

(a) increases platform profits and consumer surplus, increases the surplus of content
providers that multi-home, but decreases the surplus of those that single-home;

(b) increases (decreases) the sum of consumers’ and content providers’ surpluses when
v0 → 0 (v0 →∞);

32This result follows from our claim in footnote 14. As β∗ → −∞, our model converges to the exclusive-
only game studied by Tan and Zhou (2020); i.e., nm∗2 = 0. When β∗ ≥ 0, we get a corner equilibrium in
which all content providers multi-home, nm∗2 = 1.

33In the exclusive-only game, the market power component is equal to 1/r2.
34Note that, from (17), the subsidy term of the content provider price may change as a result of

changing exclusive content availability if the network benefits are nonlinear, since ∂φ1
∂ni

2
depends on x(β∗).
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(c) increases the overall welfare when either v0 → 0 or v0 →∞.35

Corollary 3 shows that platforms and consumers gain from the introduction of non-
exclusive prices. Consumers pay the same price as in the exclusive-only game, but gain
access to the new content provided by multi-homers. Platforms’ profits increase by two
means: the higher price being charged to exclusive content providers (p∗2 > p∗2,E, see
Corollary 2); and the gains from charging more to non-exclusive content providers than
to exclusive content providers (3p∗2m > p∗2, see inequality (19)).

After the introduction of non-exclusive contracts, content providers are ex-post di-
vided into single-homers and multi-homers. Content providers remaining as single-homers
now pay more, while maintaining access to the same mass of consumers, resulting in a
loss. Content providers that become multi-homers pay a higher price than single-homers
but gain access to more consumers and receive multiple realizations of positive idiosyn-
cratic preferences. Multi-homing content providers are better off since the gain from
these positive realizations of idiosyncratic preferences outweighs the exclusive premium
payment (p∗2m − p∗2 > 0).

Part (b) shows that the overall change in consumer and content provider surplus
is ambiguous. While consumer surplus always increases upon the introduction of non-
exclusive prices, exclusive content provider surplus can decrease more than the consumer
surplus can increase. For instance, if the difference between the deterministic utility
components of multi-homing and single-homing content providers when the prices charged
are equal to zero is small (i.e., v0 is close to zero), then the increase in consumer and
non-exclusive content provider surpluses is high enough to outweigh the loss in exclusive
content provider surplus. The opposite case is true: if v0 is large (i.e., v0 → ∞), so
that there are too many multi-homers in the market (y close to 1), then the loss in
exclusive content provider surplus is high enough to outweigh the gains in consumer and
non-exclusive content provider surpluses.

In part (c), we show that the overall welfare increases when either v0 → 0 or v0 →∞.
It follows that platforms’, consumers’, and multi-homing content providers’ gains, after
the introduction of non-exclusive contracts, are enough to outweigh the exclusive content
provider losses when either v0 → 0 or v0 → ∞. Thus, from Corollary 3, it follows that
the introduction of non-exclusive contracts is a welfare enhancing tool.

Note that for each platform, the non-exclusive price becomes a surplus extraction
35Unfortunately, we do not have a formal proof of this result for v0 ∈ (0,∞). Our simulations discussed

in the next section suggest that the overall welfare increases for any value of v0 > 0 (see Figure B2 in the
Appendix B). Corollary C.1 shows that in the case of two platforms, the introduction of non-exclusive
contracts is a welfare enhancing tool, since in that case, the platform profits, consumer surplus, and
surplus of multi-homing content providers increase, and the surplus of single-homing content providers
remains constant.
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tool. It allows platforms to have more instruments to extract content provider surplus.

4.2 Uniform distribution

In this subsection, we assume uniform idiosyncratic preferences. Most of the results pro-
vided for the model with exponential idiosyncratic preferences in the previous subsection
hold, so we limit our discussion to the existence of the equilibrium. In Appendix D, we
study additional properties of the equilibrium prices and market shares.

We assume that for each i ∈ {1, 2, 3} and k ∈ {1, 2}, εik follows an uniform distribution
with parameter tk > 0; that is, εik ∼ U[0, tk]. Note that E[εik] = tk

2 is the expected value
of the random utility component of side k users joining platform i. For each side of
the market, k ∈ {1, 2}, the idiosyncratic preferences {ε1

k, ε
2
k, ε

3
k} are i.i.d. The following

proposition characterizes the symmetric equilibrium.

Proposition 4. Assume that t2 > 1
3a2 + δv2 and 32

27t1t2 > (a1 + a2)2. There exists a
unique β∗ < 0 such that equation (16) holds, implicitly defined by

g (β) = 2 (βt2 (4a2 − 15β + 12δv2) + 3β2 (a2 − 3β + 3δv2) + 6t32)
3β (3β + 4t2) = 0.

Moreover, a unique symmetric subgame perfect Nash equilibrium exists in which, in stage
1, all platforms charge prices

p∗1 = t1
3︸︷︷︸

≡M1(0)

−a2

2 ,

p∗2 = − t22
2β∗︸ ︷︷ ︸

≡M2(β∗)

−1
2a1, and

p∗2m = 2β∗3 − 4t32 − β∗t22 + 4β∗2t2
6β∗2 + 8β∗t2︸ ︷︷ ︸
≡M2m(β∗)

−1
6a1.

(20)

In stage 2, the market shares are n∗1 = 1
3 , n

∗
2 = 1

3 (1− x), and nm∗2 = x, where x =
1− 3β∗2(β∗+2t2)

4t32
.

Note that, from Proposition 4, it follows that

M2m(β∗)−M2(β∗) = (β∗ + t2)2

3β∗ + 4t2
.

In the proof of Proposition 4, we show that β∗ ∈ (−t2, 0). It follows that the market
power term M2m is larger than M2, which implies that platforms exert higher market
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power on multi-homing content providers, as in the exponential distribution game. The
subsidy term in p∗2, a1/2, is three times that of p∗2m, a1/6, so content providers receive
the same subsidy regardless of whether they choose single-homing or multi-homing. In
equilibrium, content providers obtain smaller deterministic utility through multi-homing
rather than single-homing but are compensated with positive realizations of the idiosyn-
cratic preferences {ε1

2, ε
2
2, ε

3
2}. Moreover, inequality (19) holds for the uniform case. Then,

it follows that content providers that multi-home are being charged more than those that
single-home, with the difference in prices, p∗3m − p∗2, greater than the difference between
the deterministic utility components of multi-homing and single-homing when the prices
charged are equal to zero. Thus, the qualitative results of Proposition 3 hold for the game
with uniform idiosyncratic preferences.36

In Corollary D.1 in Appendix D, we show that as the expected value of the random
utility component of content providers increases (i.e., t2 increases), β∗ decreases (i.e.,
content providers have stronger preferences for platforms), increasing the attractiveness
of the single-homing content providers for platforms. Thus, the proportion of multi-
homing content providers decreases as t2 increases.

Moreover, Corollary D.2 in Appendix D shows that the introduction of non-exclusive
prices softens competition for content providers (i.e., p∗2 > p∗2,E). As in the game with
exponential idiosyncratic preferences, with the introduction of non-exclusive contracts,
exclusive content providers’ surplus decreases. The effect on surplus of content providers
that switch to multi-homing depends on 3p∗2m − p∗2,E, which is positive since 3p∗2m > p∗2

and p∗2 > p2,E. If 3p∗2m − p∗2,E ≥ 2t2 + v0—that is, if multi-homing content providers
are being charged more than two times the expected value of the difference between
the random utility components of multi-homing and single-homing content providers,
2t2, plus the difference between the deterministic utility components of multi-homing
and single-homing content providers, v0—then multi-homing content providers are worse
off with the introduction of non-exclusive contracts. The opposite result holds true: If
3p∗2m − p∗2,E < 2t2 + v0, then multi-homing content providers are better off with the
introduction of non-exclusive contracts.

Corollary D.2 also shows that consumers benefit from the new content provided by
multi-homers while paying the same price charged in the exclusive-only game. This
implies that consumer surplus increases with the introduction of the non-exclusive price.
Additionally, platforms’ profits increase as a result of a softening in competition and gains
from multi-homing content providers that are being charged more than single-homing
ones. Finally, if the marginal network benefit a1 is high, the gains in consumer surplus
and platform profits are enough to outweigh the loss in content provider surplus, so that

36Note also that both distribution functions have positive supports.
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the overall welfare increases. Thus, non-exclusive contracts increase welfare.37

Again, note that the qualitative results presented in Corollary 3 hold when the idiosyn-
cratic preferences are uniformly distributed except for multi-homing content providers
that, in certain cases, can be worse off with the introduction of non-exclusive contracts.

5 Entry

We now study how prices and platform profits change when the number of platforms
goes from n = 2 to n = 3 in our exclusive–non-exclusive model. We assume that for each
i ∈ {1, 2, 3} and k ∈ {1, 2}, εik follows an exponential distribution with parameter rk > 0.
For n ∈ {2, 3}, in the exclusive–non-exclusive game with n platforms, p∗1,n denotes the
price that consumers pay to join a platform. Note that

p∗1,3 − p∗1,2 = a1

2 > 0.

It follows that consumer price increases when the number of platforms goes from n = 2 to
n = 3. This is because the subsidy that consumers receive in equilibrium decreases as the
number of platforms increases, while the market power of platforms remains constant.38

For content providers, the price increases when the number of platforms increases
from n = 2 to n = 3. There are two forces: the network and market power effects. For
n ∈ {2, 3}, in the exclusive–non-exclusive game with n platforms, p∗2,n denotes the price
that content providers pay to exclusively join a platform; p∗2m,n denotes the price content
providers pay to each platform to non-exclusively join all platforms.39 Note that

p∗2,3 − p∗2,2 = a1

2 + y4

r2 (1− y4) > 0, and

p∗2m,3 − p∗2m,2 = a1

3 + 3y4 + y3 + y2 + y

6r2 (1− y4) > 0.

The introduction of non-exclusive contracts gives a new margin to platforms—the non-
exclusive margin. Then, the market power that each platform exerts over content providers

37By a1 high, we mean that there exists a1 > 0 such that for any a1 > a1, the gains in consumer
surplus outweigh the loss in content provider surplus (see the proof of Corollary D.2).

38In the exclusive–non-exclusive game with n platforms, consumer price is given by

p∗1,n = 1−H1(0)
h1(0) − 1

n− 1φ
′
2

(
1
n

)
.

If we assume linear externalities, p∗1,n = 1
r1
− 1

n−1a2. Then, the consumer price increases as n increases
since the subsidy that consumers receive, 1

n−1a2, is decreasing with respect to n.
39For i ∈ {1, 2, 2m}, p∗i,3 is given by (18) and p∗i,2 is given by (C.1) in Appendix C.
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increases as n increases from two to three.
Note that when the number of platforms increases, each platform has a lower total

market share of content providers, but prices increase. To simplify the comparison of
profits, let h : R2

+ −→ R be such that

π∗3 > π∗2 ⇐⇒

2(a1 + a2)−
( 1
r1

+ 1
r2

)
> h(v0, r2).

(21)

The function h(v0, r2) summarizes the effect of introducing non-exclusive contracts on
prices and market shares.40

Corollary 4. Assume 1
r2
> 1

2a2 + δv2.41 In the exclusive–non-exclusive game, if n goes
from two to three platforms: (i) consumer and content provider prices increase, (ii) plat-
forms profits increase if a1 is high enough such that (21) holds, (iii) exclusive content
provider surplus decreases, and (iv) non-exclusive content provider surplus decreases if
a1 > 2δv2.

Corollary 4 shows that the change in profits when the number of platforms increases
from two to three (in the exclusive–non-exclusive game) can be broken down into the price
effect and the market share effect. Prices are higher, but market shares are lower in the
three-platform model. Note that if the network benefit a1 is high enough such that (21)
holds, the price effect dominates the market share effect. This implies that platforms make
higher individual profit when there are three platforms in the market. In other words,
when there are more platforms, each of them is more focused on extracting surplus from
users (i.e., consumer and content provider prices increase) as opposed to increasing the
market share (i.e., consumer and content provider market shares decrease).

Exclusive content providers are worse off due to the higher price and the smaller
market share. Non-exclusive content providers pay more in the three-platform case but
receive additional base utility. Note that multi-homers not only have to pay a higher
non-exclusive price, but they also need to pay the price to an additional platform. Thus,
non-exclusive content providers are worse off if the discounted base utility, δv2, is smaller

40The function h(v0, r2) depends on the parameters a2, v2, and δ through v0. Note that h does not
depend on {r1, a1}.

41Note that this assumption is stronger than Assumption 2, and it is required for the existence of an
interior equilibrium in the exclusive–non-exclusive game with two platforms (see Appendix C). When the
idiosyncratic preferences follow an exponential distribution with n platforms and linear profit functions
from (15), it follows that Assumption 2 becomes 1

r2
> 1

na2 + δv2. As n decreases, the right-hand side of
this inequality increases, given that the marginal network benefit a2 is divided among fewer platforms.
The multi-homing choice becomes more attractive and a larger expected random utility component, 1

r2
,

is needed to guarantee the existence of an interior equilibrium.
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than the marginal network benefit a1
2 . Recall that the subsidy term in the multi-homing

content providers’ price is a1
2 when there are two platforms and a1

6 when there are three
platforms in the market. The latter case implies that the total subsidy for multi-homing
content providers with n = 2 (i.e. a1) is larger than the total subsidy when n = 3 (i.e.
a1
2 ), which explains the multi-homing content provider surplus loss when a1 > 2δv2.42

The results in Corollary 4 are similar for the exclusive-only game with exponential
idiosyncratic preferences (see, for example, Tan and Zhou, 2020). That is, as the number
of platforms increases, consumer and content provider prices increase, and platform profits
increase as long as (21) holds with h ≡ 0—similar to the exclusive–non-exclusive game.
However, consumers and content providers are worse off in the exclusive-only game, since
in both sides of the market, prices increase and market shares decrease. As a result,
the overall welfare (i.e., the sum of consumers’ surplus, content providers’ surplus, and
platforms’ profit) decreases when n goes from two to three platforms in the exclusive-only
game.

Numerical Example. We now provide a numerical example to illustrate Corollary
4. We use equilibrium prices and market shares of the exclusive–non-exclusive game—
equations (18) and (C.1)—when idiosyncratic preferences follow an exponential distribu-
tion for two and three platforms. We use the following parameters: δ = 0.9, v2 = 1,
r1 = 0.4, a2 = 2, and a1 = 2.

From Corollary 4, it follows that when then number of platforms increases in the
exclusive–non-exclusive game, exclusive content provider surplus decreases, non-exclusive
content provider surplus decreases if a1 > 2δv2, and platform profits increase if a1 is high
enough such that (21) holds. We show configurations of the parameters {r1, a1, r2, v0}
under which (21) is satisfied and study the impact on consumer surplus and welfare as
the number of platforms increases.

Let u∗1,n,ENE be defined as consumers’ utility in the exclusive–non-exclusive game with
n platforms. Figure 1A shows simulated values for the difference in consumer’ utility when
the number of platforms increases from two to three in the exclusive–non-exclusive game,
u∗1,3,ENE−u∗1,2,ENE. Figure 1A shows that consumers’ surplus decreases as n goes from two
to three platforms; that is, u∗1,3,ENE−u∗1,2,ENE < 0.43 Figure 1B shows the total amount of
content available in a platform in the exclusive–non-exclusive game decreases when n goes
from two to three platforms (i.e., n∗2,2 + nm∗2,2 > n∗2,3 + nm∗2,3 ). Then, in the exclusive–non-

42We do not have a formal proof of the change in consumer surplus when n goes from two to three plat-
forms. However, our simulations show that consumers surplus decreases when the number of platforms
increases from two to three (see Figure 1A).

43Note that in the exclusive-only game, consumer prices increase and the amount of exclusive content
available to consumers decreases, which implies that u∗1,3,E < u∗1,2,E.
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exclusive game, consumer prices increase (see Corollary 4(i)) and the amount of content
available to consumers decreases (see Figure 1B), explaining why u∗1,3,ENE < u∗1,2,ENE.

Finally, let Wn,ENE be the overall welfare in the exclusive–non-exclusive game with
n platforms. Figure 1C shows that overall welfare decreases as n goes from two to
three platforms; that is, W3,ENE −W2,ENE < 0. Note that, as n goes from two to three
platforms, consumer and content provider surpluses decrease, these losses outweigh gains
in platforms’ profits, explaining why W3,ENE < W2,ENE.44

Figure 1A: Difference in Consumers’ Utilities
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Figure 1B: Content Providers
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Note: Figure 1A shows the change in consumers’ utility as a function of r2 when n goes from two to three
platforms in the exclusive–non-exclusive game, u∗

1,3,ENE − u
∗
1,2,ENE is negative and decreasing in r2. For this

graph, we have fixed values of δ = 0.9, v2 = 1, a2 = 2, and a1 = 2. Figure 1B shows the total amount of
content providers available in a platform as a function of r2 when there are two or three platforms in the
market.

44Note that Figures 1A-1B and Figure 1C use specific values of the parameters, δ = 0.9, v2 = 1, r1 =
0.4, a2 = 2, and a1 = 2. However, the qualitative behaviors in these graphs (i.e., u∗1,3,ENE−u∗1,2,ENE < 0,
n∗2,2 + nm∗2,2 > n∗2,3 + nm∗2,3 , and W3,ENE −W2,ENE < 0) remain valid for many other configurations of the
parameters {a1, a2, r1, δ, v2}. We were unable to find a configuration of these parameters for which the
results in the Figures 1A-1B and Figure 1C did not hold.
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Figure 1C: Difference in Welfare
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Note: Figure 1C shows the difference in welfare, W3,ENE −W2,ENE, as function of r2
(on the x-axis). For the simulation, we use the following parameters: δ = 0.9, v2 = 1,
a2 = 2, and a1 = 2.

5.1 Deterring Entry

In this subsection, we explore the possibility of introducing or removing non-exclusive
contracts as a way to deter entry. Suppose a market with two incumbent platforms
facing one potential entrant. These platforms can jointly commit to offer exclusive-only
or exclusive–non-exclusive contracts to deter entry.45

We study the following game: Suppose that the two incumbent platforms jointly
commit to offer exclusive-only (E) or exclusive–non-exclusive prices (ENE). The potential
entrant pays an entry cost, c, to enter the market. If the incumbent platforms offer
exclusive-only (exclusive–non-exclusive) prices and the entrant enters the market, then
each of the incumbent platforms receive π3,E (π3,ENE), and the entrant receives π3,E − c
(π3,ENE− c); if the entrant platform does not enter the market, it receives 0, while each of
the incumbent platforms receives π2,E (π2,ENE). Note that, by Corollary 3, π3,E < π3,ENE.46

The following proposition characterizes the equilibrium of the game.

Proposition 5. (i) If c ∈ (π3,E, π3,ENE) and π3,ENE < π2,E, then the incumbent plat-
forms offer exclusive-only contracts and the entrant does not enter;

(ii) if c < π3,E or c > π3,ENE, the incumbent platforms offer exclusive–non-exclusive
contracts, and the entrant enters the market only if c < π3,E.

45Notice that if the two incumbents do not offer non-exclusive prices, then the entrant is effectively
forced to offer exclusive prices only, since no content provider will be able to accept its non-exclusive
price.

46In fact, it is not difficult to show that after the introduction of non-exclusive prices in the exponential
distribution game with two platforms, π2,E < π2,ENE.
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Proposition 5(i) shows that if c ∈ (π3,E, π3,ENE), the entrant’s optimal strategy depends
on the incumbents’ decision. Using backward induction, Proposition 5(i) shows that
the incumbent platforms deter entry by offering exclusive-only contracts if and only if
π3,ENE < π2,E. That is, platforms will switch to offering exclusive contracts only if the
profits in the exclusive-only game with two platforms are larger than the profits in the
exclusive–non-exclusive game with three platforms.

Note that π3,ENE < π2,E if and only if

2 (a1 + a2)−
( 1
r1

+ 1
r2

)
< h2 (v0, r2) , (22)

where h2 (v0, r2) ≡ − 1
r2

y3(9y5−15y4+y3+y2−6y+16)
1−y4 < 0. From (22) and the definition of h2, it

follows that a necessary condition for platforms to deter entry is that 2(a1 +a2) < 1
r1

+ 1
r2
;

that is, marginal network benefits must be small relative to the expected random utility
components of users.

From Proposition 5, it follows that platforms cannot deter entry by offering exclusive–
non-exclusive contracts. If the incumbent platforms choose to offer exclusive–non-exclusive
contracts, the entrant’s decision depends on the value of c. Proposition 5(ii) shows that
if c < π3,E, then it enters the market; if c > π3,ENE, then it does not enter the market.
In these two cases, incumbent platforms will always offer exclusive–non-exclusive prices,
since πn,E < πn,ENE for n = 2, 3. In conclusion, offering exclusive-non-exclusive contracts
does not help platforms to deter entry.

Finally, in the following corollary, we compare both games—the exclusive-only and
exclusive–non-exclusive game—when n increases from two to three platforms.

Corollary 5. Assume 1
r2
> 1

2a2 + δv2. If the number of platforms, n, increases from
two to three: (i) platforms are better off in the exclusive–non-exclusive game than in the
exclusive-only game if and only if h(v0, r2) < 0; (ii) exclusive content providers are worse
off in the exclusive–non-exclusive game than in the exclusive-only game.

If platforms’ profits increase when n increases from two to three in both games and
h(v0, r2) < 0 (> 0), then platforms in the exclusive–non-exclusive game will gain more
(less) than those in the exclusive-only game. Similarly, if platforms’ profits decrease
when the number of platforms increases, then, if h(v0, r2) < 0 (> 0), platforms in the
exclusive–non-exclusive game will lose less (more) than those in the exclusive-only game.

Intuitively, when the number of platforms increases in the exclusive–non-exclusive
game, the exclusive content provider price increases by a1

2 + y4

r2(1−y4) ; whereas in the
exclusive-only game, the price increases by a1

2 . Thus, y4

r2(1−y4) measures the greater loss
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of the exclusive content providers in the exclusive–non-exclusive game.47 Note that when
platforms are allowed to offer both exclusive and non-exclusive prices, they have more
tools to extract surplus from content providers.

6 Discussion

In this section, we discuss examples of two-sided platforms and how they fit with our
model prediction. First, we explore examples where exclusive and non-exclusive content
providers are compensated differently, focusing on the difference in payment received by
exclusive versus non-exclusive content providers. Then, we discuss examples related to
platform entry, focusing on price changes by incumbent platforms and changes in content
availability to consumers.

Exclusive–non-exclusive markets. Live streaming on Twitch.tv is an example where
content providers self-select into exclusive or non-exclusive contracts. Content providers
can stream on Twitch.tv at different participation levels. A Basic user can stream on the
platform but does not receive any ad revenue. An Affiliate receives a share of the ad rev-
enue, but its streaming content is bounded by a timed-exclusivity clause prohibiting the
content from being broadcast on other platforms within 24 hours. Content providers that
wish to earn ad revenue from participation on Twitch.tv must bind themselves to the ex-
clusivity agreement. This exclusivity agreement echoes our exclusive–non-exclusive model
with negative content provider prices in equilibrium. While most individual streamers
only live-stream on Twitch.tv, other content providers such as news outlets (e.g., FOX,
ABC ) and political campaigns (e.g., election candidate rallies) often live-stream simulta-
neously on Youtube, Facebook, and Twitch.tv. These content providers are not interested
in the platform payments; they are often looking for benefits separate from streaming
(e.g., political donations, advertisement contracts unrelated to the platforms, or mer-
chandise sales). This observation is consistent with our assumption that multi-homing
content providers join all platforms.

Similarly, ridesharing services like Uber and Lyft offer special benefits to drivers who
act as exclusive contractors. To be eligible for these benefits, both platforms have (high)
cutoffs (in terms of the number of rides) that make drivers exclusively work with one
firm, whereas consumers multi-home across the two platforms. Finally, cable companies
are a good example where consumers usually single-home, while content providers multi-
home to multiple (some of them to all) cable companies. The credit card market is
a common example of platforms that match buyers and sellers. Sellers rarely receive

47Note that y4

r2(1−y4) is increasing in y, the proportion of multi-homers in the exclusive–non-exclusive
game; thus, the greater this proportion is, the greater the loss for exclusive content providers.
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payments exclusively through only one credit card issuer, and it is practically impossible
for credit card issuers to limit the number of credit cards in the consumer’s wallet (buyer
side). Exclusivity is ensured through the conditions under which cardholders can use the
benefits offered. For example, credit card issuers often offer discounted travel and rental
car insurance on the condition that the cardholder pays the airline ticket or car rental
cost exclusively with the issuer’s card.48

In the examples above, users are allowed to self-select into exclusive or non-exclusive
contracts. In either case, the self-selected exclusive users receive higher benefits from
the platform than non-exclusive users. Our model predicts that non-exclusive users and
platforms are better off when non-exclusive contracts are introduced, and exclusive users
are worse off.

eSports events are another example of multi-homing content providers that live-stream
their content. Unlike the self-selected multi-homing content providers we discussed above,
these content providers usually negotiate a deal with each platform. Carroni et al. (2020)
show that big content providers that are vertically integrated with a platform are more
likely to prefer multi-homing than non-integrated big content providers. Karle et al.
(2020) consider a coordination game where multiple big discrete content providers decide
between single-homing or multi-homing. Platforms can sustain high prices when content
provider competition is intense because content providers are eager to avoid each other.

Platform Entry. Disney Plus’s video streaming platform is an example of platform
entry. Consistent with our model’s prediction, rival video streaming platform Netflix
announced a price increase soon after Disney entered the market.49 The increase in price
is a result of Netflix being able to attract fewer users from existing rivals (e.g., Hulu
and Amazon Prime Video), since the entry of Disney Plus cannibalized the existing user
base and created a new segment of loyal users who are unlikely to be attracted by other
platforms lowering their prices.

Disney’s entry into the video streaming market raised concerns among users of existing
video streaming platforms: Disney content that was previously streamed on a variety on
platforms would no longer be available on Netflix or other streaming services. Our model
shows that platform entry will splinter the existing user base into smaller fragments,
resulting in smaller benefits for content providers, while prices increase. The surplus loss

48Insurance is not a direct payment, but a form of tying goods. Amelio and Jullien (2012) show that
tying goods can act as a form of substitute payment and improve welfare in platform markets.

49Disney Plus was announced in August 2017, and Netflix announced a price increase in October 2017.
Netflix’s price increase was the second price increase in 18 months; the timing and frequency suggests
that it was related to Disney’s entry (https://www.nytimes.com/2017/08/09/business/media/with-
disneys-move-to-streaming-a-new-era-begins.html; http://www.marketwatch.com/story/did-netflix-
choose-a-perfect-time-to-hike-subscription-costs-2017-10-06).
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is partially alleviated by having Disney better serve its loyal users.50

We explore the possibility of introducing or removing non-exclusive contracts as a
way to deter entry. Previous literature has studied the impact of exclusive contracts
on platform choice. Lee (2013) estimated the impact of exclusive titles on the adoption
of sixth-generation video game consoles, concluding that exclusivity promotes entry of
smaller platforms but does not benefit the larger incumbent. Intuitively, new entrants
benefit from exclusive contracts by providing novel content that incumbents do not have,
which attracts consumers and strengthens their user base. Disney Plus’s content The
Mandalorian piqued interest in the new platform, helping it to build a consumer base.
Corts and Lederman (2009) and Nair (2007) estimate the impact of exclusive and non-
exclusive titles on console adoption. Corts and Lederman (2009) report that 40% of
total video game titles to be non-exclusively available on multiple consoles, and Prieger
and Hu (2008) suggest that “PlayStation 2 and Xbox garner most of their revenue from
non-exclusive titles.” Our paper complements the discussion on exclusive-contracts by
showing that platforms cannot deter entry by offering exclusive–non-exclusive contracts.
In certain circumstances, platforms will jointly deviate and offer exclusive contracts only,
in order to deter entry.

7 Conclusion

In this paper, we study how the availability of both exclusive and non-exclusive contracts
affects two-sided market outcomes and how the presence of these contracts impacts the
share of exclusive and non-exclusive content available on platforms.

We consider a model with n symmetric platforms serving a two-sided market with
two types of users: consumers and content providers. We study the subgame perfect
Nash equilibrium of the two-stage problem and provide two examples where a unique
symmetric subgame perfect Nash equilibrium exists with three platforms (when the id-
iosyncratic preferences are exponentially and uniformly distributed). We show that the
introduction of non-exclusive contracts softens the competition for content providers be-
tween platforms, as they have more tools to extract content surplus; that is, they have a

50Competition between Disney and Netflix is different from our model in one important way: both
platforms are major content providers to their own streaming services. Hagiu and Lee (2011), Carrillo and
Tan (2018), Carroni et al. (2020), and Karle et al. (2020) consider the possibility of platforms making
content production decisions by purchasing content providers. Athey et al. (2016) studied platforms’
ability to produce content; however users were exogenously determined to be single-homing or multi-
homing, which limited the model’s ability to understand the impact on availability of multi-homing
content. Carroni et al. (2020) focused on the incentive of superstar content providers to multi-home, but
did not explore superstars’ impact on fringe content providers’ decision to multi-home. The question of
how vertically integrated content providers would impact the availability of multi-homing fringe content
providers is an interesting direction in which to extend the current research.
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new margin to extract content providers’ surplus—the exclusive–non-exclusive margin—
in addition to the exclusive-exclusive margin. Consumers pay the same price as that in
the exclusive-only game, but gain access to new content provided by multi-homing con-
tent providers, increasing their surplus. Content providers remaining as single-homers
are gaining access to the same mass of consumers, but being paid less, resulting in a loss.
Content providers that become multi-homers now receive a payment from each platform
and receive multiple realizations of positive idiosyncratic preferences. Platforms’ profits
increase by two means: the higher price being charged to exclusive content providers, and
the the gains from charging more to non-exclusive content providers than to exclusive
content providers. Finally, we show that welfare increases when the share of multi-homing
content providers is small or close to one.

We show that when the number of platforms increases from two to three in the
exclusive–non-exclusive game, equilibrium prices increase. As the number of platforms
increases, exclusive content providers are worse off due to the higher price and the smaller
market share. Non-exclusive content providers are worse off if the discounted base utility
is smaller than consumers’ marginal network benefit. We show that platforms’ profits
increase if the network benefit on the consumers’ side is high, so that the price effects
dominate the market share effects. Thus, having more competing platforms in the market
is not necessarily consumer welfare enhancing in the exclusive–non-exclusive game.

Finally, we show that platforms cannot deter entry by offering exclusive–non-exclusive
contracts. In certain circumstances, platforms will jointly deviate from the exclusive–
non-exclusive game and offer exclusive prices only, in order to deter entry. These results
contribute to analyses with important antitrust applications.

One plausible extension is to consider the horizontal quality of the content: The lit-
erature has yet to address what happens when consumers have preferences for different
content providers on the other side. Intuitively, this feature is expected to dampen the
impact of fragmentation by offering the benefits of more “filtered” results, such as con-
tent providers easily reaching their target audiences and dating site participants easily
meeting people with similar backgrounds. A second extension is to consider the effects
on competition when platforms integrate with content providers. Our non-tipping mod-
els provided insights on availability of non-exclusive contents, which tipping models are
unable to analyze.
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Appendix
A Proofs

Proof of Theorem 1. We assume full market coverage and Assumption 1. Sup-
pose that there exists a unique solution β∗ of the equation (16) and that J(β∗) 6= 0,
where J is the Jacobian associated with equations (13). We show that there exists
a symmetric subgame perfect Nash equilibrium (n∗, p∗), where all platforms charge
prices p∗ = (p∗1, p∗2, p∗2m) given by (17), and the equilibrium market shares are given by
n∗ =

(
n∗1 = 1

n
, n∗2 = 1

n
(1− x) , nm∗2 = x

)
. The proof has two steps:

(i) We show that given a deviation in quantities n1 from the proposed symmetric
equilibrium (SE), there is a corresponding vector of prices p1 such that (n1,p1) is
a participative equilibrium (PE).

(ii) We derive the profit function of a platform that deviates from the proposed SE and
show that this deviation is not profitable.

(i) Assume that platform i = 1 deviates from the proposed SE by choosing quantities
n1 = (n1, n2, n

m
2 ). Platforms that do not deviate from the SE charge prices (p∗1, p∗2, p∗2m)

given by (17). We show that there is a vector of prices p1 such that (n1,p1) is a PE.
Note that n1 is a PE of p1 if and only if n1 solves


n1 = Q1

1 (u1
1, u
∗
1, . . . , u

∗
1, 0)

n2 = Q1
2 (u1

2, u
∗
2, . . . , u

∗
2, u

m
2 )

nm2 = Qm
2 (u1

2, u
∗
2, . . . , u

∗
2, u

m
2 ) ,

(A.1) and


1−n1
n−1 = Qj

1 (u1
1, u
∗
1, . . . , u

∗
1, 0)

1−n2−nm2
n−1 = Qj

2 (u1
2, u
∗
2, . . . , u

∗
2, u

m
2 )

for each j ∈ {2, · · · , n}.
(A.2)

Quantity u1
1 is the deterministic utility component of a consumer who joins platform

1, and u1
2 the deterministic utility component of a content provider that joins platform

1. The quantities u∗1 and u∗2 are the deterministic utility components of consumers and
content providers, respectively, that join one of the n − 1 non-deviating platforms. The
quantity um2 is the deterministic utility component of content providers multi-homing to
all platforms. These terms are defined, respectively, as
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u1
1 = v1 + φ1 (n2, n

m
2 )− p1,

u1
2 = v2 + φ2 (n1)− p2,

u∗1 = v1 + φ1

(1− n2 − nm2
n− 1 , nm2

)
− p∗1,

u∗2 = v2 + φ2

(1− n1

n− 1

)
− p∗2, and

um2 = v2 + v2 (n− 1) δ + φm

(
n1,

1− n1

n− 1 · 1n−1

)
− p2m − (n− 1) p∗2m.

(A.3)

We define the random variables (RVs)

Xk ≡ ε1
k − max

j 6=1, j∈N

(
εjk
)
, for k ∈ {1, 2},

Y ≡ −
n∑
j=2

εj2, and

Z ≡ ε2 · 1n − max
j 6=1, j∈N

(
εj2
)
.

(A.4)

For any x0, y0, z0 in R, we define the distributions

H1(x0) ≡ P(X1 ≤ x0),

F 1 (x0, y0) ≡ P (X2 > x0, Y > y0) , and

F 2 (z0, y0) ≡ P (Z > z0, Y < y0) .

(A.5)

Let x(β∗) ≡ F 2(−β∗, β∗). From (A.1), (9)-(11), and (A.4)-(A.5), the market shares
of the deviating platform n1 satisfy

n1 = P
(
ε1

1 − max
j 6=1, j∈N

(
εj1
)
> u∗1 − u1

1

)
= 1−H1

(
u∗1 − u1

1

)
,

n2 = P
(
X2 > u∗2 − u1

2, Y > um2 − u1
2

)
= F 1(u∗2 − u1

2, u
m
2 − u1

2), and

nm2 = P
(
Z > u∗2 − um2 , Y < um2 − u1

2

)
= F 2(u∗2 − um2 , um2 − u1

2).

(A.6)
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Note that (A.6) can be rewritten as

n1 − 1 +H1
(
u∗1 − u1

1

)
= 0,

F 1(u∗2 − u1
2, u

m
2 − u1

2)− n2 = 0, and

F 2(u∗2 − um2 , um2 − u1
2)− nm2 = 0.

(A.7)

From (A.3), we know that the quantities u∗1 − u1
1, u∗2 − u1

2, um2 − u1
2, and u∗2 − um2

are functions of (n1,p1) = (n1, n2, n
m
2 , p1, p2, p2m). Thus, equations in (A.7) constitute a

system of non-linear equations in the variables (n1,p1).

Claim: (A.7) implicitly determines the inverse demand function n1 7→ p1(n1) = (p1(n1),
p2(n1), p2m(n1)), where p1(n1) is such that (n1,p1(n1)) is a PE.

Proof of the Claim: We use the Implicit Function Theorem (IFT) to show that there ex-
ists a neighborhood of n∗, and an inverse demand function p1 = (p1(n1), p2(n1), p2m(n1))
that solves (A.7) for each n1 in that neighborhood.

In order to apply the IFT, we verify the following two conditions:

(a) (A.7) has a solution at (n, p) = (n∗, p∗) where p∗ is given by (17).

(b) The Jacobian J of (A.7) with respect to the variables in p1 = (p1, p2, p2m) at (n∗,
p∗) is non-zero.

(a) At (n∗,p∗) = ( 1
n
, 1
n

[1− x (β∗)] , x (β∗) , p∗1, p∗2, p∗2m), (A.7) reduces to

1
n
− 1 +H1 (0) = 0,

F 1(0, β∗)− 1
n

(1− x(β∗)) = 0, and

F 2(−β∗, β∗)− x(β∗) = 0,

where H1(0) = n−1
n

. By definition, x(β∗) = F 2(−β∗, β∗), and by the full market coverage
assumption, F 1(0, β∗) = 1

n
(1− x(β∗)). Thus, (A.7) has a solution at (n∗, p∗).

(b) The Jacobian (A.7) is

J(β∗) =

∣∣∣∣∣∣∣∣∣
∂H1
∂p1

∂H1
∂p2

∂H1
∂pm2

∂F 1

∂p1
∂F 1

∂p2
∂F 1

∂p2m
∂F 2

∂p1
∂F 2

∂p2
∂F 2

∂p2m

∣∣∣∣∣∣∣∣∣
(n,p)=(n∗,p∗)

=

∣∣∣∣∣∣∣∣∣
h1 0 0
0 F 1

1 + F 1
2 −F 1

2

0 F 2
2 F 2

1 − F 2
2

∣∣∣∣∣∣∣∣∣
(n,p)=(n∗,p∗)

,
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where h1 is the derivative of the distribution H1 given by (A.5), and F i
k represents the

partial derivative of F i in the k-coordinate. From (15), β∗ is

β∗ = um∗2 − u∗2 = v2 (n− 1) δ + φm

( 1
n
· 1n

)
− φ2

( 1
n

)
+ p∗2 − np∗2m.

Thus the Jacobian J(β∗) can expressed as

J(β∗) = h1(0)
[
F 1

1 (0, β∗)
(
F 2

1 (−β∗, β∗)− F 2
2 (−β∗, β∗)

)
+ F 1

2 (0, β∗)F 2
1 (−β∗, β∗)

]
︸ ︷︷ ︸

≡D(β∗)

= h1(0)D(β∗).
(A.8)

By assumption, J(β∗) 6= 0. From the IFT, there exists a neighborhood of n∗ and an
inverse demand function p1 = (p1(n1), p2(n1), p2m(n1)) that solves (A.7) for each n1 in
that neighborhood.

(ii) The profit function of the deviating platform is

π1(n1) = n1 · p1(n1) + n2 · p2(n1) + nm2 · p2m(n1). (A.9)

We show that any deviation from the SE is not profitable. Note that any stationary
point of π1 (n1) satisfies

∂π1

∂n1
= p1 + ∂p1

∂n1
n1 + ∂p2

∂n1
n2 + ∂p2m

∂n1
nm2 = 0,

∂π1

∂n2
= p2 + ∂p2

∂n2
n2 + ∂p1

∂n2
n1 + ∂p2m

∂n2
nm2 = 0, and

∂π1

∂nm2
= p2m + ∂p2m

∂nm2
nm2 + ∂p1

∂nm2
n1 + ∂p2

∂nm2
n2 = 0,

(A.10)
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where ∂p1

∂n1 = ∂(p1,p2,p2m)
∂(n1,n2,nm2 ) at n∗ is given by


∂p1
∂n1
∂p2
∂n1
∂p2m
∂n1

 =


− 1
h1(0)

n
n−1φ

′
2

(
1
n

)
1

n−1φ
′
2

(
1
n

)
 ,


∂p1
∂n2
∂p2
∂n2
∂p2m
∂n2

 = 1
D(β∗)


D(β∗) n

n−1
∂φ1
∂ni2

(
1
n

(1− x) , x
)

F 2
1 (−β∗, β∗)− F 2

2 (−β∗, β∗)
−F 2

2 (−β∗, β∗)

 , and


∂p1
∂nm2
∂p2
∂nm2

,
∂p2m
∂nm2

 = 1
D(β∗)


D(β∗) 1

n−1
∂φ1
∂ni2

(
1
n

(1− x) , x
)

F 1
2 (0, β∗)

F 1
1 (0, β∗) + F 1

2 (0, β∗)

 .

(A.11)

Note that D(β∗) 6= 0, since J(β∗) 6= 0. After imposing symmetry and plugging
equations (A.11) into (A.10), p∗1 is given by

p∗1 −
1−H1 (0)
h1 (0) + 1

n− 1φ
′
2

( 1
n

)
= 0, (A.12)

and {p∗2, p∗2m} are given by

p∗2 + 1
n− 1

∂φ1

∂ni2

( 1
n

(1− x) , x
)

+ 1
D(β∗)

[ 1
n

(
F 2

1 (−β∗, β∗)− F 2
2 (−β∗, β∗)

)
(1− x)− F 2

2 (−β∗, β∗)x
]

= 0, and
(A.13)

p∗2m + 1
n (n− 1)

∂φ1

∂ni2

( 1
n

(1− x) , x
)

+ 1
D(β∗)

[(
F 1

1 (0, β∗) + F 1
2 (0, β∗)

)
x+ 1

n
(1− x)F 1

2 (0, β∗)
]

= 0.
(A.14)

We define the functions M2 : R −→ R, and M2m : R −→ R as

M2 (β) ≡ − 1
D (β)

[ 1
n

(
F 2

1 (−β, β)− F 2
2 (−β, β)

)
(1− x (β))− F 2

2 (−β, β)x (β)
]
,

M2m (β) ≡ − 1
D (β)

[(
F 1

1 (0, β) + F 1
2 (0, β)

)
x (β) + 1

n
(1− x (β))F 1

2 (0, β)
]
.

(A.15)
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It follows that p∗ is given by

p∗1 = 1−H1 (0)
h1 (0) − 1

n− 1φ
′
2

( 1
n

)
,

p∗2 = M2(β∗)− 1
n− 1

∂φ1

∂ni2

( 1
n

(1− x) , x
)
, and

p∗2m = M2m(β∗)− 1
n (n− 1)

∂φ1

∂ni2

( 1
n

(1− x) , x
)
.

(A.16)

From Assumption 1, n∗ is the unique stationary point of (A.10). It follows that any
deviation from the SE is not profitable, which concludes the proof of the theorem.

Proof of Proposition 2. We prove this proposition by contradiction. We assume that
β∗ ≥ 0 and show that the equilibrium is not interior. Suppose that β∗ ≥ 0. From (A.6),

n∗2 = P

X2 ≥ 0,−
n∑
j=2

εj2 ≥ β∗

 .
If the support of the distribution of the function of the idiosyncratic preferences {εi2}ni=1

is positive, then

n∗2 ≤ P

− n∑
j=2

εj2 ≥ β∗

 ≤︸︷︷︸
β∗≥0

P

− n∑
j=2

εj2 ≥ 0
 = P

 n∑
j=2

εj2 ≤ 0
 = 0.

It follows that n∗2 = 0 and nm∗2 = 1, so that the equilibrium is not interior.

Lemma 1. Assume linear network benefit functions. For s, r ∈ {1, 2, 3}, dsr denotes the
(s, r)-entry of the Hessian matrix of the profit function, D2π1. Suppose that

(a) H1 (defined by A.5) is log-concave;

(b) d11d22 >
(

n
n−1

)2
(a1 + a2)2 ;

(b) d11 (d22d33 − d2
23) <

(
n
n−1

)2
(a1 + a2)2

(
d33 − 2

n
d23 + 1

n2d22
)
.

Then, Assumption 1 is satisfied.

Proof of Lemma 1. Note that Lemma 1 provides simpler conditions—–on the dis-
tributions of the idiosyncratic preferences—–which imply Assumption 1. Recall that π1

is
π1(n1) = n1 · p1(n1) + n2 · p2(n1) + nm2 · p2m(n1), (A.17)
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where p1(n1) = (p1(n1), p2(n1), p2m(n1)) is defined by (A.7). For l ∈ {1, 2, 2m} and
k ∈ {1, 2}, let

(pl)k ≡
∂pl
∂nk

and (pl)3 ≡
∂pl
∂nm2

.

Similarly, for k, j ∈ {1, 2}, let (pl)kj ≡ ∂2pl
∂nk∂nj

. Suppose that φ1(ni2, nm2 ) = a1(ni2 +
nm2 ), φ2(ni1) = a2n

i
1, and φm (n1

1, n
2
1, n

3
1) = a2 (n1

1 + n2
1 + n3

1), where a1, a2 are positive
constants. From (A.11) and (A.17),

D2π1 =


2 (p1)1 + n1 (p1)11

n
n−1(a1 + a2) 1

n−1(a1 + a2)
n
n−1(a1 + a2) 2 (p2)2 + n2 (p2)22 + nm2 (p2m)22 (p2)3 + n2 (p2)23 + (p2m)2 + nm2 (p2m)23

1
n−1(a1 + a2) (p2)3 + n2 (p2)23 + (p2m)2 + nm2 (p2m)23 n2 (p2)33 + 2 (p2m)3 + nm2 (p2m)33

 .
(A.18)

Note that D2π1 can be expressed as

D2π1 =


d11

n
n−1 (a1 + a2) 1

n−1 (a1 + a2)
n
n−1 (a1 + a2) d22 d23
1

n−1 (a1 + a2) d23 d33

 . (A.19)

From (A.18) and (A.19), D2π1 is negative definite if and only if

(a) d11 < 0,

(b) d11d22 >
(

n

n− 1

)2
(a1 + a2)2 , and

(c) d11
(
d22d33 − d2

23

)
<
(

n

n− 1

)2
(a1 + a2)2

(
d33 −

2
n
d23 + 1

n2d22

)
.

(A.20)

Note that if H1 is log-concave, then (a) always holds true. Thus, if H1 is log-concave,
and (b) and (c) hold true, then Assumption 1 is satisfied.

Proof of Proposition 3. The proof has two steps: (i) We show that a symmetric
equilibrium (SE) exists; (ii) We show that the second-order conditions are satisfied.

(i) We show that there exists a unique solution β∗ of the equation (16) and that J(β∗) 6= 0
(defined by A.8). Then, from Theorem 1, the existence of the SE follows.

From (A.4), Xk = ε1
k −max {ε2

k, ε
3
k} for k ∈ {1, 2}, Y = −ε2

2 − ε3
2, and Z = ε2 · 13 −
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max {ε2
2, ε

3
2}. From (A.5), the distributions H1, F 1, and F 2 are

H1 (x0) = P (X1 ≤ x0) =

e
r1x0 − 1

3e
2r1x0 x0 < 0

1− e−r1x0
3 x0 ≥ 0

, (A.21)

F 1 (x0, y0) = P (X2 > x0, Y > y0) =


1
3e
−r2x0

(
−4e

3r2y0
2 + 3e2r2y0 + 1

)
x0 ≥ 0 ∧ y0 < 0

0 y0 ≥ 0
,

(A.22)

and

F 2 (z0, y0) = P (Z > z0, Y < y0)

=

e
−2r2z0

(
−2er2(y0+z0) + 4e 1

2 r2(y0+2z0) − 1
)

y0 < 0 ∧ y0 + 2z0 > 0

1 (y0 = 0 ∧ z0 ≤ 0) ∨ (y0 > 0 ∧ z0 < 0)

.

(A.23)

Suppose that if a solution β∗ of equation (16) exists, it must be the case that β∗ < 0.51

We verify this ex-post and study the other case (β∗ ≥ 0) at the end of the proof. Suppose
that β < 0, from (A.23), x (β) = F 2 (−β, β) = e2r2β

(
4e− 1

2 r2β − 3
)
. Let y ≡ e

βr2
2 , then

x (β) = 4y3 − 3y4. From (A.15), (A.22), and (A.23) we get that

M2 (β) = 1
r2 (1− y4) , and

M2m (β) = 6 + y + y2 + y3 − 3y4

6r2 (1− y4) .

Similarly, from (A.8)

J(β) = 2r1

3 r2
2y

3 (1− y)2
(
1 + y + y2 + y3

)
.

Note that J(β) 6= 0 for each y ∈ (0, 1) (since β < 0, y ∈ (0, 1)). Equation (16) can be
expressed as

g (β) = 2v2δ + 2a2

3 −
1

2r2

4− 3e
r2β

2

1− e
r2β

2
− β = 0. (A.24)

51We are not assuming that β∗ exists, but merely assuming what should be the sign of it in case it
does exists.
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From (A.24), the derivative of g(β) is

g′ (β) = −−7e
r2β

2 + 4er2β + 4

4
(
e
r2β

2 − 1
)2 = −4y2 − 7y + 4

4 (1− y)2 < 0 for all β < 0.

Thus, g is a strictly decreasing function for β ∈ (−∞, 0). Moreover,

lim
β→−∞

g (β) =∞ and lim
β→0−

g (β) = −∞.

It follows that there exists a unique β∗ < 0 that satisfies equation g (β∗) = 0. From
Theorem 1, the existence of the SE follows.

From (17), equilibrium prices are

p∗1 = 1
r1
− a2

2 ,

p∗2 = 1
r2 (1− y4) −

1
2a1, and

p∗2m = 6 + y + y2 + y3 − 3y4

6r2 (1− y4) − 1
6a1,

(A.25)

and equilibrium market shares are

n∗1 = 1
3 ,

n∗2 = 1
3
(
1− y3 (4− 3y)

)
, and

nm∗2 = y3 (4− 3y) .

(A.26)

If β ≥ 0, from (A.22) and (A.23), n2 = F 1 (0, β) = 0 and nm2 = F 2 (−β, β) = 1. In
this case, J(β) = 0. Therefore, we cannot apply Theorem 1. Instead, we would have to
solve the new platform’s problem given by

max
{p1,p2,p2m}

π1 (p1, p2, p2m) = n1p1 + p2m,

subject to β = um2 − u2 = 2v2δ + 2a2
3 + p2 − p2m − 2p∗2m ≥ 0. However, this prob-

lem has no finite solution in prices, since by letting p1 → 0, p2 → ∞ and p2m → ∞,
π1 (p1, p2, p2m)→∞.

(ii) To show that the second-order conditions are satisfied, we show that inequalities (a)-
(c) in Lemma 1 hold true. Note that (a) follows from the fact that H1, given by (A.21),
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is log-concave. From (A.21),

d11 =


− 1
n1r1

n1 ≤ 1/3

−
4
(

1
2(3−

√
3
√

4n1−1)3
− 9

4(3−
√

3
√

4n1−1)2
− 3

2(3−
√

3
√

4n1−1)+9
)

√
3(4n1−1)3/2(3−

√
3
√

4n1−1)2
r1

n1 > 1/3
. (A.27)

From (A.27), minn1∈[0,1]{−d11} = 3
r1
. From the full market coverage assumption and

(A.19), d22 = 2 (p2)2 + n2 (p2)22 + nm2 (p2m)22 is a function only of nm2 . From (A.22) and
(A.23), it follows that minnm2 ∈[0,1]{−d22} = 3

r2
. Assumption 2 implies that

d11d22 >
9
r1r2

>
9
4 (a1 + a2)2 .

Thus, (b) in Lemma 1 is satisfied. Similarly, (d22d33 − d2
23) and

(
d33 − 2

3d23 + 1
9d22

)
are functions only of nm2 . From (A.22) and (A.23), it follows that

min
nm2 ∈[0,0.93]

{
− d22d33 − d2

23
d33 − 2

n
d23 + 1

n2d22

}
= 1
r2

(A.28)

Assumption 2 implies that

d11

(
d22d33 − d2

23
d33 − 2

n
d23 + 1

n2d22

)
>

3
r1r2

>
9
4 (a1 + a2)2 .

Since
(
d33 − 2

3d23 + 1
9d22

)
< 0 for all nm2 , it follows that (c) in Lemma 1 holds true.

Thus, the second-order conditions are satisfied for any n1 ∈ [0, 1], and nm2 ∈ [0, 0.93].

Proof of Corollary 1. From (A.25) and the fact that y ∈ (0, 1), it follows that

p∗2 − 3p∗2m = − 4− 3y
2r2 (1− y) < 0,

p∗2 − p∗2m = −
(
a1

3 + y (3y2 + 2y + 1)
6r2 (y3 + y2 + y + 1)

)
< 0.

(i) If we differentiate with respect to r2 in both sides of (A.24), by the Implicit Function
Theorem

∂β∗

∂r2
= 1
r2

2

(
1

y + 4 (1− y)2

)2 (4− 3y) (1− y)− r2yβ
∗︸ ︷︷ ︸

>0, since y∈(0,1)

 > 0. (A.29)
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(ii) First we show that ∂y
∂r2

> 0. Recall that ∂y
∂r2

= 1
2y
(
β∗ + r2

∂β∗

∂r2

)
. From (A.29),

∂y

∂r2
= y (1− y) (4− 3y + 2r2 (1− y) β∗)

r2
(
4− 7y + 4y2

)
︸ ︷︷ ︸

>0

. (A.30)

Note that (A.30) is positive if (4− 3y)+2r2β
∗ (1− y) > 0. Recall that β∗ is implicitly

defined by
2v2δ + 2a2

3 −
1

2r2

4− 3y
1− y − β

∗ = 0,

which implies that
4− 3y
1− y + 2r2β

∗ = 2r2

(
2v2δ + 2a2

3

)
> 0.

Thus, ∂y
∂r2

> 0. From (A.26),

∂nm∗2
∂r2

= ∂nm∗2
∂y︸ ︷︷ ︸
>0

· ∂y
∂r2

= 12(1− y)y2 · ∂y
∂r2

> 0,

which concludes the proof.

Proof of Corollary 2. It follows directly from Proposition 3.

Proof of Corollary 3. Note that

p∗2 − p∗2,E = 1
r2 (1− y4) −

1
r2

= 1
r2
· y4

1− y4 > 0. (A.31)

(a) Consumer surplus is computed by comparing the utility, u∗1, that consumers obtain in
the exclusive–non-exclusive game versus the utility, u∗1,E, they obtain in the exclusive-only
game,

∆CS1 = (u∗1 − u∗1,E)

= 2
3a1

(
4y3 − 3y4

)
> 0, since y ∈ (0, 1).

(A.32)

Note that content provider surplus can be broken down into exclusive and non-
exclusive groups. Exclusive content provider surplus is

∆CSE2 = (u∗2 − u∗2,E)

= − 1
r2

y4

(1− y4) < 0, since y ∈ (0, 1).
(A.33)
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Non-exclusive content provider surplus is

∆CSNE2 = (um∗2 − u∗2,E)

= 2v2δ + 2
3a2 − 3p∗2m + p∗2,E + E

[
εj2 + εl2

∣∣∣∣∣um∗2 > max
i
u∗2

]
.

(A.34)

To compute the conditional expected value E
[
εj2 + εl2

∣∣∣∣∣um∗2 > maxi u∗2
]
, we use the fact

that in the symmetric equilibrium, maxi u∗2 = u∗2. It follows that

E
[
εj2 + εl2

∣∣∣∣∣um∗2 > u∗2

]
= E

[
εj2 + εl2

∣∣∣∣∣2v2δ + 2
3a2 + p∗2 − 3p∗2m +

(
εj2 + εl2

)
> 0

]

= E

εj2 + εl2

∣∣∣∣∣εj2 + εl2 > −
(

2v2δ + 2
3a2 + p∗2,E − 3p∗2m

)
︸ ︷︷ ︸

≡c0


= E

[
εj2 + εl2

∣∣∣∣∣εj2 + εl2 > c0

]
= c2

0r
2
2 + 2c0r2 + 2
r2 (c0r2 + 1) ,

(A.35)

Note that c0 = −β∗ + (p∗2 − p∗2,E). From (A.31), p∗2 > p∗2,E, it follows that c0 > 0.
From (A.34) and (A.35)

∆CSNE2 = c0r2 + 2
r2 (c0r2 + 1)

= 1
r2
·
(

6 (1− y4)
3 (−3y4 + y3 + y2 + y + 6)− 4r2 (a2 + 3δv2) (1− y4) + 1

)
> 0.

(A.36)

Finally, the difference in profits between the exclusive–non-exclusive and exclusive-only
games is

∆π = (n∗1p∗1 + n∗2p
∗
2 + nm∗2 p∗2m)−

(
n∗1,Ep

∗
1,E + n∗2,Ep

∗
2,E

)
= 1

3
(
p∗2 − p∗2,E

)
︸ ︷︷ ︸

>0

+1
3 (3p∗2m − p∗2)︸ ︷︷ ︸

>0

nm∗2 > 0. (A.37)

From (A.32), (A.33), (A.36) and (A.37), it follows that the introduction of non-exclusive
contracts increases consumer surplus and platform profits, increases the surplus of con-
tent providers that multi-home, but decreases the surplus of those that single-home.

(b) ∆CS denotes the sum of consumer and content provider surpluses, ∆CS ≡ ∆CS1 +
∆CSE2 + ∆CSNE2 . We show that ∆CS → −∞ as v0 → ∞, and ∆CS > 0 as v0 → 0,

46



which proves (b). From (A.32), (A.33) and (A.36),

∆CS = 2
3a1

(
4y3 − 3y4

)
− 1
r2

y4

(1− y4)

+ 1
r2
·
(

6 (1− y4)
3 (−3y4 + y3 + y2 + y + 6)− 4r2 (a2 + 3δv2) (1− y4) + 1

)
.

(A.38)

Note that when v0 = 2δv2 + 2
3a2 →∞, from (A.24), β∗ → 0− and y → 1−. Similarly,

from (A.24)
lim
v0→∞

v0 (1− y) = 1
2r2

.

From (A.38), it follows that ∆CS → −∞ as v0 → ∞. Similarly, as v0 → 0, from
(A.24) y → y0, where y0 is the unique solution of

4− 3y0

4(1− y0) + ln(y0) = 0. (A.39)

From (A.39), y0 ≈ 0.326.
As v0 → 0, ∆CS can be rewritten as ∆CS = 2

3a1 (4y3
0 − 3y4

0) + 1
r2
M (y0), where

M(y0) ≡ 8y8
0 − 2y7

0 − 2y6
0 − 2y5

0 − 19y4
0 + y3

0 + y2
0 + y0 + 8

(1− y4
0) (−3y4

0 + y3
0 + y2

0 + y0 + 6) .

Since M(y0) > 0, as v0 → 0, ∆CS > 0.

(c) W denotes the overall welfare, W = ∆CS + ∆π. Note that

lim
v0→∞

W = 8a1r2 + 23
12r2

> 0.

Also, as v0 → 0

lim
v0→0+

W = y3
0 (y0 (9y4

0 − 15y3
0 + y2

0 + y0 − 6) + 16)
6r2 (1− y4

0)︸ ︷︷ ︸
>0 for any y0∈(0,1)

+2
3a1

(
4y3

0 − 3y4
0

)
+ 1
r2
M (y0) > 0.

Thus, overall welfare increases when either v0 → 0 or v0 →∞.

Proof of Proposition 4. The proof has two steps: (i) We show that a symmetric
equilibrium (SE) exists; (ii) We show that the second-order conditions are satisfied.

(i) We show that a symmetric equilibrium (SE) exists. We show that there exists a unique
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solution β∗ of the equation (16) and that J(β∗) 6= 0, where J is given by (A.8). From
Theorem 1, the existence of the SE follows.

From (A.4), Xk = ε1
k −max {ε2

k, ε
3
k} for k ∈ {1, 2}, Y = −ε2

2 − ε3
2, and Z = ε2 · 1n −

max {ε2
2, ε

3
2}. From (A.5), the distributions H1, F 1, and F 2 are

H1 (x0) = P (X1 ≤ x0) =


(2t1−x0)(t1+x0)2

3t31
x0 = 0 ∨ (t1 + x0 > 0 ∧ x0 < 0)

1 t1 ≤ x0

, (A.40)

F 1 (x0, y0) = P (X2 > x0, Y > y0)

=



y2
0(2t2−2x0+y0)

4t32
x0 = 0 ∧ y0 ∈ (−t2, 0)

−6y2
0(t2−x0)+12y0(t2−x0)2+4(t2−x0)3+y3

0
12t32

x0 = 0 ∧ y0 ∈ (−2t2,−t2)

0 x0 = 0 ∧ y0 ∈ (0,∞)
1
3 x0 = 0 ∧ y0 ∈ (−∞,−2t2)

,
(A.41)

and

F 2 (z0, y0) = P (Z > z0, Y < y0)

=



12t32−6t2(y2
0+2z2

0)+y3
0+6y2

0z0+4z3
0

12t32
z0 + y0 = 0 ∧ y0 ∈ (−t2, 0)

(2t2−z0)3

4t32
z0 + y0 = 0 ∧ y0 ∈ (−2t2,−t2)

1 z0 + y0 = 0 ∧ y0 ∈ (0,∞)

0 z0 + y0 = 0 ∧ y0 ∈ (−∞,−2t2)

. (A.42)

Suppose that if a solution β∗ of equation (16) exists, it must be the case that β∗ ∈
(−t2, 0) (we study the other cases at the end of the proof). Suppose that β ∈ (−t2, 0),
from (A.42), x (β) = F 2 (−β, β) = 1 − 3β2(β+2t2)

4t32
. From (A.15), (A.41), and (A.42)

combined, we obtain

M2 (β) = − t22
2β , and

M2m (β) = 2β3 − 4t32 − βt22 + 4β2t2
6β2 + 8βt2

.

Similarly, from (A.8)

J(β) = 1
t1
· β

2 (3β + 4t2)
2t52

.
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Note that J(β) 6= 0 since β ∈ (−t2, 0). Equation (16) becomes

g (β) = 2 (βt2 (4a2 − 15β + 12δv2) + 3β2 (a2 − 3β + 3δv2) + 6t32)
3β (3β + 4t2) = 0. (A.43)

From (A.43), g′ is given by

g′ (β) = t22

(
1

(3β + 4t2)2 −
1
β2

)
− 2 < 0 for all β ∈ (−t2, 0) .

Thus, g is a strictly decreasing function for β ∈ (−t2, 0). Moreover,

lim
β→(−t2)+

g (β) = 2
3 (a2 + 3δv2) > 0 and lim

β→0−
g (β) = −∞.

Therefore, there exists a unique β∗ ∈ (−t2, 0) that satisfies equation g (β∗) = 0. From
Theorem 1, the existence of the SE follows.

From (17), equilibrium prices are

p∗1 = t1
3 −

a2

2 ,

p∗2 = − t22
2β∗ −

1
2a1, and

p∗2m = 2β∗3 − 4t32 − β∗t22 + 4β∗2t2
6β∗2 + 8β∗t2

− 1
6a1,

and equilibrium market shares are

n∗1 = 1
3 ,

n∗2 = β∗2(β∗ + 2t2)
4t32

, and

nm∗2 = 1− 3β∗2(β∗ + 2t2)
4t32

.

(A.44)

If β ∈ (0,∞), from (A.41) and (A.42), n2 = 0, nm2 = 1 and J(β) = 0. Thus, we
cannot apply Theorem 1. Instead, we would have to solve the new platform’s problem
given by

max
{p1,p2,p2m}

π1 (p1, p2, p2m) = n1p1 + p2m,

subject to β = um2 − u2 = 2v2δ + 2a2
3 + p2 − p2m − 2p∗2m > 0. However, this prob-

lem has no finite solution in prices, since by letting p1 → 0, p2 → ∞ and p2m → ∞,
π1 (p1, p2, p2m) → ∞. If β ∈ (−∞,−2t2), it is not difficult to show that no finite solu-
tion in prices exists. Finally, if β ∈ (−2t2,−t2), J(β) 6= 0 and the solution of (16) is
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β∗ = a2
3 − t2 + δv2, which do not satisfy the imposed restriction β∗ ∈ (−2t2,−t2).

(ii) To show that the second-order conditions are satisfied, we show that inequalities (a)-
(c) in Lemma 1 hold true. Note that (a) follows from the fact that H1, given by (A.40),
is log-concave. From (A.40) and (A.19),

min
n1∈[0,1]

{−d11} = 4
3t1. (A.45)

From the full market coverage assumption and (A.19), d22 = 2 (p2)2 + n2 (p2)22 +
nm2 (p2m)22 is a function only of nm2 . From (A.41) and (A.42), it follows that

min
nm2 ∈[0.25,0.8]

{−d22} > 2t2. (A.46)

By assumption 32
27t1t2 > (a1 + a2)2, which implies that for any n1 ∈ [0, 1] and nm2 ∈

[0.25, 0.8],
d11d22 >

8
3t1t2 >

9
4 (a1 + a2)2 .

Thus, (b) in Lemma 1 is satisfied. Similarly, (d22d33 − d2
23) and

(
d33 − 2

3d23 + 1
9d22

)
are functions of nm2 . From (A.41) and (A.42), it follows that

min
nm2 ∈[0.25,0.8]

{
− d22d33 − d2

23
d33 − 2

n
d23 + 1

n2d22

}
> 2t2. (A.47)

By assumption 32
27t1t2 > (a1 + a2)2, which implies that

d11

(
d22d33 − d2

23
d33 − 2

n
d23 + 1

n2d22

)
>

8
3t1t2 >

9
4 (a1 + a2)2 .

Since
(
d33 − 2

3d23 + 1
9d22

)
< 0 for all nm2 ∈ [0.25, 0.8], it follows that (c) in Lemma

1 holds true. Thus, the second-order conditions are satisfied for any n1 ∈ [0, 1], and
nm2 ∈ [0.25, 0.8].

Proof of Corollary 4. In the Appendix C, we show that prices in the two-platform
exclusive–non-exclusive game (with exponential idiosyncratic preferences) are given by

p∗2,2 = 1
r2
− a1 and p∗2m,2 = 1

r2
− 1

2a1,

where p∗2,n and p∗2m,n denote the price that single- and multi-homing content providers
pay, respectively, with n platforms.
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(i) From (18), p∗1,3 − p∗1,2 = a2
2 > 0,

p∗2,3 − p∗2,2 =
(

1
r2 (1− y4) −

1
2a1

)
−
( 1
r2
− a1

)

= a1

2 + y4

r2 (1− y4) > 0, and

p∗2m,3 − p∗2m,2 =
(

6 + y + y2 + y3 − 3y4

6r2 (1− y4) − 1
6a1

)
−
( 1
r2
− 1

2a1

)

= a1

3 + 3y4 + y3 + y2 + y

6r2 (1− y4) > 0.

Thus, consumer and content provider prices increase as n goes from two to three plat-
forms.

(ii) Let π∗n be the equilibrium profits with n platforms. We show that ∆π = π∗3 − π∗2 > 0.
Note that

∆π = π∗3 − π∗2
=
(
n∗1,3p

∗
1,3 + n∗2,3p

∗
2,3 + nm∗2,3p

∗
2m,3

)
−
(
n∗1,2p

∗
1,2 + n∗2,2p

∗
2,2 + nm∗2,2p

∗
2m,2

)
= 1

3 (a1 + a2)− 1
6r1
− 1

6r2

[
3 (1 + x∗2) (1− y4)− 2

1− y4 − y3 (4− 3y)2

(1− y)

]
,

where x∗2 = ea2r2+2δv2r2−2. It follows that ∆π > 0 ⇐⇒

2 (a1 + a2)− 1
r1
− 1
r2
> h(v0, r2), (A.48)

where h is defined as

h(v0, r2) ≡ 1
r2

[
3 (1 + x∗2) (1− y4)− 2

1− y4 − y3 (4− 3y)2

(1− y) − 1
]
.

Thus, if a1 is such (A.48) holds, then ∆π > 0.

(iii) Let ∆CS2 be the difference in the surplus for the exclusive content providers when
the number of platforms increases from two to three in the exclusive–non-exclusive game.
We show that ∆CSE2 < 0. From Proposition 3,

∆CSE2 = ∆u∗2

= −1
6a2 −

(
a1

2 + y4

r2 (1− y4)

)
< 0.

(A.49)
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(iv) Let ∆CSm2 be the difference in the surplus for the non-exclusive content providers
when the number of platforms increases from two to three in the exclusive–non-exclusive
game. From Proposition 3,

∆CSm2 = (2v2δ − v2δ)−
(
3p∗2m,3 − 2p∗2m,2

)
+ E

[
εi2|um∗2,3 > u∗2,3 and um∗2,2 > u∗2,2

]
= v2δ −

1
2a1 −

y (3y3 + y2 + y + 1)
2r2 (1− y4)︸ ︷︷ ︸
>0, since y∈(0,1)

. (A.50)

From (A.50), if a1 > 2δv2, then ∆CSm2 < 0.

Proof of Proposition 5. The game described in Subsection 5.1 can be summarized by
the following diagram:

A

ENE E

B

(π3,ENE, π3,ENE − c)

Enter

(π2,ENE, 0)

Not enter

B

(π3,E, π3,E − c)

Enter

(π2,E, 0)

Not enter

.

Node A represents the decision of the two incumbent platforms and node B represents
the decision of the entrant platform, where E refers to the exclusive-only pricing decision
and ENE to the exclusive–non-exclusive pricing decision. The entry cost is c. It follows
that:

(i) If c ∈ (π3,E, π3,ENE) and π3,ENE < π2,E, then the incumbent platforms offer exclusive-
only contracts and the entrant does not enter;

(ii) if c < π3,E or c > π3,ENE, the incumbent platforms offer exclusive–non-exclusive
contracts and the entrant enters the market only if c < π3,E.

Proof of Corollary 5. (i) Let ∆πENE ≡ π3,ENE − π2,ENE and ∆πE ≡ π3,E − π2,E be the
difference between platforms’ profits when the number of platforms increases from two
to three in the exclusive–non-exclusive and the exclusive-only games, respectively. From
the proof of Corollary 4

∆πENE = 1
3 (a1 + a2)− 1

6r1
− 1

6r2

[
3 (1 + x∗2) (1− y4)− 2

1− y4 − y3 (4− 3y)2

(1− y)

]
, (A.51)
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and
∆πE = 1

6

(
− 1
r1
− 1
r2

+ 2a2 + 2a1

)
. (A.52)

From (A.51) and (A.52), it follows that

∆πE −∆πENE = 1
6r2

[
3 (1 + x∗2) (1− y4)− 2

1− y4 − y3 (4− 3y)2

(1− y) − 1
]

= 1
6h (v0, r2) .

(A.53)

From (A.53), if the number of platforms, n, increases from two to three, platforms
are better off in the exclusive–non-exclusive game than in the exclusive-only game if and
only if h < 0.

(ii) Let ∆CSE2,ENE and ∆CSE
2.E be the content provider surpluses when the number of

platforms increases from two to three in the exclusive–non-exclusive and the exclusive-
only games, respectively. From the proof of Corollary 4

∆CSE2,ENE −∆CSE
2.E = −1

6a2 −
(
a1

2 + y4

r2 (1− y4)

)
−
(
−a2

6 −
a1

2

)

= − y4

r2 (1− y4) < 0.
(A.54)

Thus, exclusive content providers are worse off in the exclusive–non-exclusive game
than in the exclusive-only game.
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B Tables and Figures

Table B1: Video Streaming Exclusive and Non-Exclusive Titles

Amazon Exclusive Hulu Exclusive Netflix Exclusive Non-Exclusive
The Grand Tour Handmaid’s Tale Narcos Disney content
Mozart in the Jungle 11.22.63 House of Cards Mr. Robot
The Tick Mindy Project Stranger Things One Punch
The Wire Futurama Black Mirror Friends
Lore Always Sunny Santa Clarita Diet Movies

Table B2: Video Games Exclusive and Non-Exclusive Titles

PlayStation Exclusive Nintendo Exclusive Xbox Exclusive Non-Exclusive
Little Big Planet Mario series Kinect series Final Fantasy
Crash Bandicoot Zelda series Halo Guitar Hero
Kingdom Hearts Wii Remote series Gears of War Just Dance
Grand Tourismo Splatoon Forza Horizon Portal
Metal Gear Solid Harvest Moon Cuphead Call of Duty

Figure B1: Two-Platform Exclusive–Non-Exclusive Market Share

Note: Users with high εi will exclusively join platform i. Users with high εj will exclusively join platform j; whereas users
with high εi and εj will multi-home and join both platforms.

Under the assumptions of the exponential distribution game with three platforms. After
the introduction of non-exclusive contracts, Figure B2 shows the sum of the consumer
and content provider surpluses (orange line) and the overall welfare (blue line); i.e.,
the sum of the consumer and content provider surpluses plus platform profit surplus as
functions of v0. The set of parameters is given by r1 = 0.4, r2 = 0.4, and a1 = 2, while
v0 ≡ 2

3a2 + 2δv2 ∈ (0, 30).
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Figure B2: Sum of the Consumer and Content Provider Surpluses and the Overall Welfare
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Note: Figure B2 shows the sum of the consumer and content provider surpluses (orange line) and the overall
welfare (blue line) as functions of v0. For this graph, we have fixed values of r1 = 0.4, r2 = 0.4, and a1 = 2.
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ONLINE APPENDIX (Not for Publication)

C Two Platforms: Exponential Distribution

Similar to Subsection 4.1, we focus on linear network benefit functions— φ1(ni2, nm2 ) =
a1(ni2 + nm2 ), φ2(ni1) = a2n

i
1, and φm (n1

1, n
2
1, n

3
1) = a2 (n1

1 + n2
1 + n3

1), where a1 and a2 are
positive constants. We assume that for each i ∈ {1, 2} and k ∈ {1, 2}, εik follows an
exponential distribution with parameter rk > 0. For each side of the market, k ∈ {1, 2},
ε1
k and ε2

k are i.i.d.

Proposition C.1. Assume that 1
r2
> 1

2a2 + δv2 and 1
2r1r2

> (a1 + a2)2. There exists a
unique β∗ < 0 such that equation (16) holds and β∗ = a2

2 −
1
r2

+ δv2. Moreover, a unique
symmetric subgame perfect Nash equilibrium exists in which, in stage 1, all platforms
charge prices

p∗1 = 1
r1︸︷︷︸
≡M1

−a2,

p∗2 = 1
r2︸︷︷︸
≡M2

−a1, and

p∗2m = 1
r2︸︷︷︸
≡M2m

−1
2a1.

(C.1)

In stage 2, the market shares are n∗1 = 1
2 , n

∗
2 = 1

2

(
1− e2r2β∗

)
, and nm∗2 = e2r2β∗.

Note that from Proposition C.1, the market power terms M2 and M2m are equal, which
implies that platforms exert the same market power on multi-homing and single-homing
content providers. The subsidy term in p∗2, a1, is two times that of p∗2m, a1/2, so content
providers receive the same subsidy regardless of whether they decide to single-home or
multi-home. Since β∗ < 0, in equilibrium, content providers obtain smaller determinis-
tic utility by multi-homing rather than single-homing. However, multi-homing content
providers are compensated by the realizations of positive idiosyncratic preferences. We
now compare changes in prices and social surpluses upon the introduction of non-exclusive
contracts in the following corollary.

Corollary C.1. The introduction of non-exclusive contracts: (a) increases platform prof-
its, consumer surplus, and content provider surplus of those who multi-home; (b) does
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not affect content provider surplus of those who single-home; (c) increases the overall
welfare.

Corollary C.1 shows that platforms, consumers, and multi-homing content providers
gain from introduction of non-exclusive contracts. Consumers and single-homing content
providers pay the same price as in the exclusive-only game, but consumers gain access
to the new content provided by multi-homers. Single-homing content providers have
access to the same amount consumers on side 1. Platforms’ profits increase because
non-exclusive content providers are being charged more than exclusive content providers.

Even though multi-homing content providers pay a higher price (p∗2 < p∗2m), they
receive multiple realizations of positive idiosyncratic preferences. The gain from these
positive realizations of idiosyncratic preferences outweighs the exclusive premium pay-
ment (p∗2m − p∗2 > 0), so multi-homing content providers are better off than before.

Since platform profits increase, consumer and multi-homing content provider surpluses
increase, and single-homing content provider surplus remains constant. Thus, from Corol-
lary C.1, it follows that the introduction of non-exclusive contracts is a welfare enhancing
tool.

Proofs of Section C

Proof of Proposition C.1. The proof has two steps: (i) We show that a symmetric
equilibrium (SE) exists; (ii) We show that the second-order conditions are satisfied.

(i) We show that there exists a unique solution β∗ of the equation (16) and that J(β∗) 6= 0
(defined by A.8). Then, from Theorem 1, the existence of the SE follows.

From (A.4), Xk = ε1
k − ε2

k for k ∈ {1, 2}, Y = −ε2
2, and Z = ε1

2. From (A.5), the
distributions H1, F 1, and F 2 are

H1 (x) = P (X1 ≤ x0) =


er1x0

2 x0 ≤ 0

1− e−r1x0
2 x0 > 0

, (C.2)

F 1 (x0, y0) = P (X2 > x0, Y > y0) =


1
2e
−r2x0 (1− e2r2y0) x0 ≥ 0 ∧ y0 < 0

0 y0 ≥ 0
, (C.3)

and

F 2 (z0, y0) = P (Z > z0, Y < y0) =

e
r2(y0−z0) y0 ≤ 0 ∧ z0 ≥ 0

1 y0 > 0 ∧ z0 < 0
. (C.4)
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Suppose that any solution β of equation (16) must be negative.52 From (A.5), x (β) =
F 2 (−β, β) = e2r2β. From (A.15), (C.3), and (C.4) we get that

M2 (β) = M2m (β) = 1
r2
.

Similarly, from (A.8)

J(β) = r1

2 · r
2
2e

2βr2 .

Note that J(β) 6= 0 for each β ∈ (−∞, 0). Equation (16) can be expressed as

g (β) = a2

2 − β −
1
r2

+ δv2 = 0. (C.5)

From (C.5), β∗ = a2
2 −

1
r2

+ δv2. Since a2
2 + δv2 <

1
r2
, it follows that β∗ < 0. From

Theorem 1, the existence of the SE follows. From (17), equilibrium prices are

p∗1 = 1
r1
− a2,

p∗2 (β∗) = 1
r2
− a1, and

p∗2m (β∗) = 1
r2
− 1

2a1,

(C.6)

and equilibrium market shares are n∗1 = 1
2 , n

∗
2 = 1

2

(
1− e2r2β∗

)
, and nm∗2 = e2r2β∗ .

(ii) To show that the second-order conditions are satisfied, we show that inequalities (a)-
(c) in (A.20) hold true. Note that (a) follows from the fact that H1, given by (C.2), is
log-concave. From (C.2), (C.3), and (C.4), if n1 < 1/2, then (b) and (c) are equivalent
to

1
2r1r2n1 (2n2 + nm2 ) > (a1 + a2)2 . (C.7)

If n1 ≥ 1/2, (b) and (c) are equivalent to

2− n1

2 (n1 − 1)2 r1r2 (2n2 + nm2 )
> (a1 + a2)2 . (C.8)

If 1
2r1r2

> (a1 + a2)2 then (C.7) and (C.8) hold true. Thus, (a)-(c) hold true which and
the second-order conditions are satisfied.

52Similar to the proof of Proposition 3, assuming β ≥ 0 would imply that no finite solution in prices
exists.
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Proof of Corollary C.1. Note that

p∗1,E = 1
r1
− a2 and p∗2,E = 1

r2
− a1.

Consumer surplus is computed by comparing the utility, u∗1, that consumers obtain in the
exclusive–non-exclusive game versus the utility, u∗1,E, they obtain in the exclusive-only
game,

∆CS1 = (u∗1 − u∗1,E)

= a1 ·
1
2e

2r2β∗
> 0.

(C.9)

Note that content provider surplus can be broken down into exclusive and non-
exclusive content groups. Exclusive content provider surplus is

∆CSE2 = (u∗2 − u∗2,E) = 0. (C.10)

Non-exclusive content provider surplus is

∆CSNE2 = (um∗2 − u∗2,E)

= v2δ + 1
2a2 − 2p∗2m + p∗2,E + E

[
εj2|um∗2 > max

i
u∗2

]
.

(C.11)

To compute the conditional expected value E
[
εj2|um∗2 > maxi u∗2

]
, we use the fact that in

the symmetric equilibrium maxi u∗2 = u∗2. It follows that

E
[
εj2|um∗2 > max

i
u∗2

]
= E

εj2|εj2 > −
(
v2δ + 1

2a2 −
1
r2

)
︸ ︷︷ ︸

≡c0


= c0r2 + 1

r2
,

(C.12)

Note that c0 > 0, since a2
2 + δv2 <

1
r2
. From (C.11) and (C.12)

∆CSNE2 = 1
r2
> 0. (C.13)

Finally, the difference in profits between the exclusive–non-exclusive and exclusive-only
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games is

∆π = (n∗1p∗1 + n∗2p
∗
2 + nm∗2 p∗2m)−

(
n∗1,Ep

∗
1,E + n∗2,Ep

∗
2,E

)
= 1

2
(
p∗2 − p∗2,E

)
︸ ︷︷ ︸

=0

+1
2 (2p∗2m − p∗2)︸ ︷︷ ︸

>0

nm∗2

= 1
2r2

nm∗2 .

(C.14)

Note that (a) follows from (C.9), (C.13), and (C.14). Item (b) follows from (C.10). Item
(c) follows directly from (a) and (b).
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D Uniform Distribution: Two and Three Platforms

In this section, we study another example in which equation (16) has a unique solution,
and therefore satisfy the condition for which Theorem 1 guarantees the existence of a
subgame perfect Nash equilibrium. We focus on linear network benefit functions.

D.1 Two-platform game

We assume that for each i ∈ {1, 2} and k ∈ {1, 2}, εik follows an uniform distribution
with parameter tk > 0; that is, εik ∼ U[0, tk]. For each side of the market, k ∈ {1, 2}, the
idiosyncratic preferences {ε1

k, ε
2
k} are i.i.d.

Proposition D.1. Assume that t2 > 1
2a2 + δv2 and 3

20t1t2 > (a1 + a2)2. There exists
a unique β∗ < 0 such that equation (16) holds, β∗ = 1

4 (2δv2 + a2 − 2t2). Moreover,
a unique symmetric subgame perfect Nash equilibrium exists in which, in stage 1, all
platforms charge prices

p∗1 = t1
2︸︷︷︸

≡M1(0)

−a2,

p∗2 = t22
t2 − β∗︸ ︷︷ ︸
≡M2(β∗)

−a1, and

p∗2m = 2t22 − β∗2
2t2 − 2β∗︸ ︷︷ ︸
≡M2m(β∗)

−1
2a1.

(D.1)

In stage 2, the market shares are n∗1 = 1
3 , n

∗
2 = 1

2 (1− x), and nm∗2 = x, where x = (β∗+t2)2

t22
.

Note that from Proposition D.1, the market power term M2 is larger than M2m, which
implies that platforms exert higher market power on single-homing content providers.
The subsidy term in p∗2, a1, is two times that of p∗2m, a1/2, so content providers receive
the same subsidy regardless of whether they decide to single-home or multi-home. In
equilibrium, content providers obtain smaller deterministic utility by multi-homing rather
than single-homing. However, multi-homing content providers are compensated by the
positive realizations of {ε1

2, ε
2
2}.

D.2 Three-platform game

Throughout this subsection, we will assume that for i ∈ {1, 2, 3} and k ∈ {1, 2}, εik follows
a uniform distribution with parameter tk > 0; that is, εik ∼ U[0, tk]. In Subsection 4.2, we
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showed that there exists a unique β∗ < 0 such that equation (16) holds, and that there
is a unique symmetric subgame perfect Nash equilibrium of the exclusive–non-exclusive
game (see Proposition 4). Next, we have a corollary for comparative statics.

Corollary D.1. In an exclusive–non-exclusive equilibrium:

(i) ∂β∗

∂t2
< 0;

(ii) ∂nm∗
2

∂t2
< 0.

Corollary D.1(i) shows that, as platforms become more differentiated (i.e, as t2 increases),
β∗ decreases. Since content providers have stronger preferences for platforms, the attrac-
tiveness of the single-homing option increases. Therefore, the proportion of multi-homing
content providers decreases (which is Part (ii) of the corollary).

We now compare changes in prices and social surpluses upon the introduction of
non-exclusive contracts in the following corollary.

Corollary D.2. The introduction of non-exclusive contracts:

(a) increases exclusive content provider prices;

(b) increases platform profits and consumer surplus. Decreases content provider surplus
of the single-homers. Let c0 ≡ −β∗+(p∗2−p∗2,E) and note that c0 > 0. If c0−2t2 < 0
(≥ 0); then, muli-homing content providers surplus increases (decreases);

(c) increases welfare for a1 high enough.53

Corollary D.2 shows that the introduction of non-exclusive contracts softens compe-
tition for content providers, since p∗2 > p∗2,E. Consumers pay the same price as in the
exclusive-only game, but gain access to the new content provided by multi-homers. Plat-
forms’ profits increase by two means: the higher price being charged to exclusive content
providers; and the gains from charging more to non-exclusive content providers than to
exclusive content providers. Exclusive content providers surplus decreases and multi-
homing content providers surplus increases (decreases) if c0 − 2t2 < 0 (≥ 0). Finally,
if the marginal network benefit a1 is high, the gains in consumer surplus and platform
profits are enough to outweigh the loss in content provider surplus, so that the overall
welfare increases. Thus, non-exclusive contracts increase welfare

In our final result, we compare prices of the exclusive–non-exclusive game when the
number of platforms increases from two to three.

53By a1 high enough, we mean that there exists a1 > 0 such that for any a1 > a1, welfare increases.
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Corollary D.3. Assume that t2 > 1
2a2 + δv2. In the exclusive–non-exclusive game, if

n goes from two to three platforms and a1 is high enough, then consumer and content
provider prices increase.54

Proofs Section D

Proof of Proposition D.1. The proof has two steps: (i) We show that a symmetric
equilibrium (SE) exists; (ii) We show that the second-order conditions are satisfied.

(i) We show that there exists a unique solution β∗ of equation (16) and that J(β∗) 6= 0
(defined by A.8). Then, from Theorem 1, the existence of the SE follows.

From (A.4), Xk = ε1
k − ε2

k for k ∈ {1, 2}, Y = −ε2
2, and Z = ε1

2. From (A.5), the
distributions H1, F 1, and F 2 are

H1 (x) = P (X1 ≤ x0) =


t21+2t1x0−x2

0
2t21

x0 = 0 ∨ (x0 < t1 ∧ x0 > 0)

1 x0 ≥ t1
, (D.2)

F 1 (x0, y0) =


−y0(2t2−2x0+y0)

2t22
x0 = 0 ∧ y0 ∈ (−t2, 0)

1
2 x0 = 0 ∧ y0 ∈ (−∞,−t2)

0 x0 = 0 ∧ y0 ∈ (0,∞)

, (D.3)

and

F 2 (z0, y0) =



(t2+y0)(t2−z0)
t22

z0 ∈ (0, t2) ∧ y0 ∈ (−t2, 0)

0 z0 ∈ (t2,∞) ∧ y0 ∈ (−∞,−t2)

1 z0 ∈ (−∞, 0) ∧ y0 ∈ (0,∞)

. (D.4)

Suppose that any solution β of equation (16) is such that β ∈ (−t2, 0). From (A.5),
x (β) = F 2 (−β, β) = (β+t2)2

t22
. From (A.15), (D.3), and (D.4) we get that

M2 (β) = t22
t2 − β

and M2m (β) = 2t22 − β2

2t2 − 2β .

Similarly, from (A.8)
54By a1 high enough, we mean that there exists ã1 > 0 such that for any a1 > ã1, content provider

prices increase.
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J(β) = 1
t1
· (t2 − β)(β + t2)

t42
.

Note that J(β) 6= 0 for each β ∈ (−t2, 0). Equation (16) can be expressed as

g (β) = a2

2 − 2β − t2 + δv2 = 0. (D.5)

From (D.5), β∗ = 1
4 (2δv2 + a2 − 2t2). Since δv2 + 1

2a2 < t2, it follows that β∗ ∈
(−t2, 0). From Theorem 1, the existence of the SE follows.

From (17), equilibrium prices are

and equilibrium market shares are n∗1 = 1
3 , n

∗
2 = 1

2 (1− x), and nm∗2 = x, where
x = (β∗+t2)2

t22
.

(ii) To show that the second-order conditions are satisfied, we show that inequalities (a)-
(c) in (A.20) hold true. Note that (a) follows from the fact that H1, given by (D.2), is
log-concave. From (D.2), (D.3), and (D.4), if n1 < 1/2, then (b) is equivalent to

1√
2√n1t1

3 (3nm2 − 14
√
nm2 + 14) t21t2

2 (2−
√
nm2 )3 > 4 (a1 + a2)2 , (D.6)

and (c) is equivalent to

60 (nm2 )
3
2 − 9 (nm2 )2 − 126nm2 + 84

√
nm2 − 1

8
√

2√n1 (
√
nm2 − 2)4 (nm2 )

1
2

t1t2 > (a1 + a2)2 . (D.7)

It follows that for any nm2 > 0.04, 3
20t1t2 > (a1 + a2)2 implies that (D.6) and (D.7)

hold true.

If n1 ≥ 1/2, (b) is equivalent to

4− 3n1√
2
√

1− n1 (1− n1)
· 3nm2 − 14

√
nm2 + 14

2 (2−
√
nm2 )3 t1t2 > 4 (a1 + a2)2 , (D.8)

and (c) is equivalent to

(4− 3n1)
(
60 (nm2 )3/2 − 9 (nm2 )2 − 126nm2 + 84

√
nm2 − 1

)
24
√

2 (1− n1)3/2 (
√
nm2 − 2)4√

nm2
t1t2 > (a1 + a2)2 . (D.9)

It follows that for any nm2 > 0.04, 3
20t1t2 > (a1 + a2)2 implies that (D.8) and (D.9)
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hold true.

In conclusion, if 3
20t1t2 > (a1 + a2)2, then the second-order conditions are satisfied for any

nm2 > 0.04.

Proof of Corollary D.1. (i) From the Implicit Function Theorem and Proposition 4,

∂β∗

∂t2
= β∗ (−3β∗3 + 16t32 + 18β∗t22)

9β∗4 + 8t42 + 12β∗t32 + 20β∗2t22 + 24β∗3t2
< 0, (D.10)

since β∗ ∈ (−t2, 0).

(ii) Note that

∂nm∗2
∂t2

=
3β∗ (3β∗ + 4t2)

(
β∗ − t2 ∂β

∗

∂t2

)
4t42

< 0.

The latter inequality holds true if and only if β∗

t2
> ∂β∗

∂t2
, which is true by (D.10) and the

fact that β∗ ∈ (−t2, 0).

Proof of Corollary D.2. (a) Let p∗2 be the exclusive price of the exclusive–non-exclusive
game, and p∗2,E be the content provider price in the exclusive-only game. By Proposition
4,

p∗2 − p∗2,E = − t22
2β∗ −

t2
3 = − t2(2β∗ + 3t2)

6β∗︸ ︷︷ ︸
Since β∗∈(−t2,0)

> 0.

(b) Consumer surplus is computed by comparing the utility, u∗1, that consumers obtain in
the exclusive–non-exclusive game versus the utility, u∗1,E, they obtain in the exclusive-only
game,

∆CS1 = (u∗1 − u∗1,E)

= 1
6a1

(
4− 3β∗2 (β∗ + 2t2)

t32

)
> 0.

(D.11)

Note that content provider surplus can be broken down into exclusive and non-
exclusive groups. Exclusive content provider surplus is

∆CSE2 = (u∗2 − u∗2,E)

= t2(2β∗ + 3t2)
6β∗ < 0.

(D.12)
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Non-exclusive content provider surplus is

∆CSNE2 = (um∗2 − u∗2,E) =

= 2v2δ + 2
3a2 − 3p∗2m + p∗2,E + E

[
εj2 + εl2

∣∣∣∣∣um∗2 > max
i
u∗2

]
.

(D.13)

To compute the conditional expected value E
[
εj2 + εl2

∣∣∣∣∣um∗2 > maxi u∗2
]
, we use the fact

that in the symmetric equilibrium maxi u∗2 = u∗2. It follows that

E
[
εj2 + εl2

∣∣∣∣∣um∗2 > u∗2

]
= E

εj2 + εl2

∣∣∣∣∣εj2 + εl2 > −
(

2v2δ + 2
3a2 + p∗2,E − 3p∗2m

)
︸ ︷︷ ︸

≡c0



= E
[
εj2 + εl2

∣∣∣∣∣εj2 + εl2 > c0

]
=



2
3 (c0 + t2) c0 < 2t2 ∧ c0 ≥ t2
2(c3

0−3t32)
3(c2

0−2t22) c0 < t2

0 c0 ≥ 2t2

,

(D.14)

Note that c0 = −β∗ +
(
p∗2 − p∗2,E

)
> 0. From (D.13) and (D.14),

∆CSNE2 =



1
3 (2t2 − c0) c0 < 2t2 ∧ c0 ≥ t2

− c3
0+6t22(t2−c0)
3(c2

0−2t22) c0 < t2

−c0 c0 ≥ 2t2

. (D.15)

Finally, the difference in profits between the exclusive–non-exclusive and exclusive-only
games is

∆π = (n∗1p∗1 + n∗2p
∗
2 + nm∗2 p∗2m)−

(
n∗1,Ep

∗
1,E + n∗2,Ep

∗
2,E

)
= 1

3
(
p∗2 − p∗2,E

)
︸ ︷︷ ︸

>0, by Corollary D.2 (i)

+1
3 (3p∗2m − p∗2)︸ ︷︷ ︸

>0

nm∗2 > 0. (D.16)

From (D.11) and (D.16), it follows that consumer surplus and platform profits in-
crease. From (D.12), content provider surplus of the single-homers decreases. From
(D.15), multi-homing content provider surplus increases (decreases) if c0− 2t2 < 0 (≥ 0).
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(c) Welfare W is

W = 1
6a1

(
4− 3β∗2 (β∗ + 2t2)

t32

)
︸ ︷︷ ︸

>0

+ t2(2β∗ + 3t2)
6β∗︸ ︷︷ ︸
<0

+



1
3 (2t2 − c0) c0 < 2t2 ∧ c0 ≥ t2

− c3
0+6t22(t2−c0)
3(c2

0−2t22) c0 < t2

−c0 c0 ≥ 2t2

.

+ ∆π︸︷︷︸
>0

Note that c0, β∗, and ∆π are independent of a1. Thus, as a1 → ∞, W → ∞. It
follows that there exists a1 > 0 such that for any a1 > a1, W > 0.

Proof of Corollary D.3. In Proposition D.1, we showed that prices in the two-platform
exclusive–non-exclusive game (with uniform idiosyncratic preferences) are given by

p∗2,2 = t22
t2 − β∗2

− a1 and p∗2m,2 = 2t22 − β∗22
2t2 − 2β∗2

− 1
2a1,

where p∗2,n and p∗2m,n denote the price that single- and multi-homing content providers
pay, respectively, with n platforms. From (20),

p∗2,3 − p∗2,2 = 1
2

(
a1 + t22

(
8

a2 − 6t2 + 2δv2
− 1
β∗3

))
.

Note that p∗2,3− p∗2,2 →∞ as a1 →∞. Similarly, p∗2m,3− p∗2m,2 →∞ as a1 →∞, since

p∗2m,3 − p∗2m,2 = 1
18

(
6a1 + t22

(
36

a2 − 6t2 + 2δv2
− 9
β∗3

+ 2
3β∗3 + 4t2

)
− 9a2

4 + 6β∗3 −
t2
2 −

9δv2

2

)
.

It follows that there exists ã1 > 0 such that for any a1 > ã1, content provider prices
increase.
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